


河北省涿鹿县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省涿鹿县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 自新冠肺炎疫情发生以来,全国人民共同抗疫,靖江市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )
A. B. C. D.
2. 若分式有意义,则x的取值范围是( )
A. x≠2B. x=2C. x≥-2D. x≥2
3. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
4. 如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是( )
A. SSSB. SASC. AASD. ASA
5. 如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,连接EN,作图痕迹中,△ODM≌△CEN根据的是( )
A. SASB. SSSC. ASAD. AAS
6. 将多项式进行因式分解的结果是( )
A. B. C. D.
7. 下列不能用平方差公式直接计算的是( )
A. B.
C D.
8. 如图,△ABC中,,,,则△ABC的周长为( )
A. 9B. 8C. 6D. 12
9. 下列说法正确的是( )
A. 代数式是分式B. 分式中x,y都扩大3倍,分式的值不变
C. 分式的值为0,则x的值为D. 分式是最简分式
10. 如果关于x的方程无解,则m的值是( )
A. 2B. 0C. 1D. –2
11. 化简.这个代数式的值和a,b哪个字母的取值无关.( )
A. a和bB. a
C. bD. 不能确定
12. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cmB. 16cmC. 19cmD. 22cm
13. 若关于x的分式方程-2=无解,则m的值为( )
A. 0B. 2C. 0或2D. 无法确定
14. 如图所示,在△ABC中,,,D是BC的中点,连接AD,,垂足为E,则AE的长为( )
A. 4B. 6C. 2D. 1
15. 如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为( )
A. 4B. C. D. 6
16. 如图,,平分,.若P到OA的距离为.若点,分别在射线,上,且△是边长为整数的等边三角形,则满足上述条件的点有(参考数据:( )
A. 4个以上B. 4个C. 3个D. 2个
二.填空题(本大题共3题,总计 12分)
17. 计算:________.
18. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________
19. 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为______.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)因式分解:;
(2)计算:.
21. 化简:(﹣) ÷ ,并解答:
(1)当x=3时,求原式的值;
(2)原式的值能等于﹣1吗?为什么?
22. 如图,在下方单位长度为1的方格纸中画有一个△ABC.
(1)画出△ABC关于y轴对称△A′B′C′;
(2)求△ABC的面积.
23. 如图,在△ABC中,,D是的中点,垂直平分,交于点E,交于点F,M是直线上的动点.
(1)当时.
①若,则点到的距离为________
②若,,求的周长;
(2)若,且△ABC的面积为40,则的周长的最小值为________.
24. 实践与探索
如图1,边长为的大正方形有一个边长为的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)
(1)上述操作能验证的等式是__________;(请选择正确的一个)
A. B. C.
(2)请应用这个公式完成下列各题:
①已知,,则__________.
②计算:
25. 某农场为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
26. 在练习课上,慧慧同学遇到了这样一道数学题:如图,把两个全等的直角三角板的斜边重合,组成一个四边形ACBD,∠ACD=30°,以D为顶点作∠MDN,交边AC,BC于点M,N,∠MDN=60°,连接MN.
探究AM,MN,BN三条线段之间的数量关系.
慧慧分析:可先利用旋转,把其中的两条线段“接起来”,再通过证明两三角形全等,从而探究出AM,MN,BN三条线段之间的数量关系.
慧慧编题:编题演练环节,慧慧编题如下:
请你解答:请对慧慧同学所编制的问题进行解答.
涿鹿县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A、不是轴对称图形,不合题意;
B、不是轴对称图形,不合题意;
C、是轴对称图形,符合题意;
D、不是轴对称图形,不合题意.
故选:C.
2.【答案】:A
【解析】:解:若分式有意义,则,
即,
故选:A
3.【答案】:B
【解析】:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
4.【答案】:D
【解析】:解:由图可知,三角形两角及夹边可以作出,
所以,依据是ASA.
故选:D.
5.【答案】:B
【解析】:解:根据题意得:,
∴△ODM≌△CEN的依据是“”,
故选:B.
6.【答案】:C
【解析】:解:
故选:C.
7.【答案】:A
【解析】:A. ,不符合平方差公式,符合题意,
B. ,符合平方差公式,不符合题意,
C. ,符合平方差公式,不符合题意,
D. ,符合平方差公式,不符合题意,
故选:A.
8.【答案】:D
【解析】:解:在△ABC中,
, ,
,
,
∴△ABC为等边三角形,
,
∴△ABC的周长为:,
故答案为:D.
9.【答案】:D
【解析】:A. 代数式不是分式,故该选项不正确,不符合题意;
B. 分式中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C. 分式的值为0,则x的值为,故该选项不正确,不符合题意;
D. 分式是最简分式,故该选项正确,符合题意;
故选:D.
10.【答案】:A
【解析】:解:方程去分母得:m+1﹣x=0,
解得x=m+1,
当分式方程分母为0,即x=3时,方程无解,
则m+1=3,
解得m=2.
故选A.
11.【答案】:C
【解析】:
,
则这个代数式的值与字母b的取值无关,
故选:C.
12.【答案】:C
【解析】:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
13.【答案】:C
【解析】:解:方程两边都乘以(x-3)得:
整理得:(m-2)x=2m-6,
由分式方程无解,
一种情况是未知数系数为0得:m-2=0,m=2,
一种情况是方程有增根得:x−3=0,即x=3,
把x=3代入整式方程得:m=0,
故选:C.
14.【答案】:C
【解析】:解: , ,D为BC中点,
,
,
,D为BC中点,
,
,
, ,
,
.
故答案为:C.
15.【答案】:B
【解析】:解:设AB=a,AD=b,由题意得8a+8b=24,2a2+2b2=12,
即a+b=3,a2+b2=6,
∴,
即长方形ABCD的面积为,
故选:B.
16.【答案】:B
【解析】:解:在OB上截取OK=OP,连接PK,
∵,平分,
∴∠AOP=∠BOP=
∴△OPK为等边三角形
∴OK=PK=OP=10,∠OPK=∠PKN=60°
先证∠MPN=60°时,△PMN为等边三角形,如下
∴∠MPO=∠NPK,
∵∠MOP=∠NKP=60°,OP=KP
∴△MOP≌△NKP
∴PM=PN
∴△PMN为等边三角形,
∵点,分别在射线,上
∴PM的最大值为OP(此时点M与点O重合,点N与点K重合);
∵若P到OA的距离为.
∴PM的最小值为
∴≤PM≤10
∵△是边长为整数,即PM为整数
∴PM=9或10
若PM=9,以P为圆心,以9为半径,交OA于M1、M2,此时满足上述条件的点有两个;
若PM=10,以P为圆心,以10为半径,交OA于M3、M4,此时满足上述条件的点有两个;
综上:满足上述条件的点有4个.
故选B.
二. 填空题
17.【答案】: 0.5
【解析】:解:原式
.
故答案为:0.5.
18.【答案】: 80°
【解析】:∵,
∴,,
设,
∴,
∴,
∵,
∴,
即,
解得:,
.
19.【答案】:
【解析】:解:如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCO是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标,
故答案为:.
三.解答题
20【答案】:
(1);
(2);
【解析】:
解:(1)原式
=;
(2)
=
=;
21【答案】:
(1),2;(2)不能,理由见解析
【解析】:
(1)原式=
=
=
=,
当时,原式==2;
(2)如果,即,
∴,而当时,除式,
∴原代数式的值不能等于.
22【答案】:
(1)见解析;(2)
【解析】:
(1)解:△ABC关于y轴对称的如下图所示 :
(2)
.
23【答案】:
(1)①1;②18
(2)14
【解析】:
【小问1详解】
①解:如图1,作于
∵,D是BC的中点
∴是的垂直平分线
∴,
∵
∴
∵,
∴
在△NBM和△ECM中
∵
∴
∴
故答案为:1.
②解:∵D是的中点,,
∴是的垂直平分线,
∴,
∴,
∴是等边三角形,
∴
∴的周长为
故答案为:18.
【小问2详解】
解:如图2,连接
∵ ,
解得
∵垂直平分
∴关于直线的对称点为
∴由两点之间线段最短可知与直线的交点即为
∴的周长的最小值为
∴的周长的最小值为14.
24【答案】:
(1)A;(2)①4;②5050
【解析】:
(1)图1表示,图2的面积表示,两个图形阴影面积相等,得到
故选A ;
(2)①
∵
∴,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=100+99+98+97+…+4+3+2+1
=101×50
=5050
【画龙点睛】本题考查了平方差公式的几何证明,题目较为简单,需要利用正方形和长方形的面积进行变形求解.
25【答案】:
(1)这项工程的规定时间是30天;
(2)该工程的施工费用为180000元.
【解析】:
【小问1详解】
解:设这项工程的规定时间是x天,根据题意得:
,
解得x=30,
经检验x=30是方程的解,
答:这项工程的规定时间是30天;
【小问2详解】
解:该工程由甲、乙合做完成,所需时间为:
,
则该工程的施工费用是:18×(6500+3500)=180000(元),
答:该工程的施工费用为180000元.
26【答案】:
【探究】AM+BN=MN,证明见解析;(1)AM+BN=MN,证明见解析;(2)BN−AM=MN,证明见解析
【解析】:
【分析】探究:延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;
(1)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;
(2)在CB截取BE=AM,连接DE,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可.
【详解】探究:AM+BN=MN,
证明:延长CB到E,使BE=AM,
∵∠A=∠CBD=90°,
∴∠A=∠EBD=90°,
在△DAM和△DBE中
∴△DAM≌△DBE,
∴∠BDE=∠MDA,DM=DE.
∵∠MDN=∠ADC=60°,
∴∠ADM=∠NDC,
∴∠BDE=∠NDC,
∴∠MDN=∠NDE.
在△MDN和△EDN中,
∴△MDN≌△EDN,
∴MN=NE.
∵NE=BE+BN=AM+BN,
∴AM+BN=MN.
解:(1)AM+BN=MN.
证明:延长CB到E,使BE=AM,连接DE,
∠ACD=45°,,。
∠MDN+∠ACD=90°,
∵∠A=∠CBD=90°,
∴∠A=∠DBE=90°.
∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,
∴∠MDN=∠CDA.
∵∠MDN=∠BDC,
∴∠MDA=∠CDN,∠CDM=∠NDB.
在△DAM和△DBE中,
∴△DAM≌△DBE,
∴∠BDE=∠MDA=∠CDN,DM=DE.
∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,
∴∠NDM=∠ADC=∠CDB,
∴∠ADM=∠CDN=∠BDE.
∵∠CDM=∠NDB
∴∠MDN=∠NDE.
在△MDN和△EDN中,
∴△MDN≌△EDN,
∴MN=NE
∵NE=BE+BN=AM+BN,
∴AM+BN=MN.
解:(2)BN−AM=MN,
证明:在CB截取BE=AM,连接DE,
∠ACD=45°,,
∠MDN+∠ACD=90°.
∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,
∴∠MDN=∠CDA.
∵∠ADN=∠ADN,
∴∠MDA=∠CDN.
∵∠B=∠CAD=90°,
∴∠B=∠DAM=90°.
在△DAM和△DBE中
∴△DAM≌△DBE,
∴∠BDE=∠ADM=∠CDN,DM=DE.
∵∠ADC=∠BDC=∠MDN,
∴∠MDN=∠EDN.
在△MDN和△EDN中,
∴△MDN≌△EDN,
∴MN=NE.
∵NE=BN−BE=BN−AM,
∴BN−AM=MN.
【画龙点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,可先利用旋转,把其中的两条线段“接起来”,再通过证明两三角形全等是解题的关键.如图(1),把两个全等的直角三角板的斜边重合,组成一个四边形ACBD,∠ACD=45°,以D为顶点作∠MDN,交边AC,BC于点M,N,,连接MN.
(1)先猜想AM,MN,BN三条线段之间的数量关系,再证明.
(2)∠MDN绕点D旋转,当M,N分别在CA,BC的延长线上,完成图(2),其余条件不变,直接写出AM,MN,BN三条线段之间的数量关系.
相关试卷
这是一份河北省蔚县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共20页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省献县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省青县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。
