所属成套资源:2025年高考数学一轮复习课件
59 第7章 第7课时 向量法求空间角-2025年高考数学一轮复习课件
展开
这是一份59 第7章 第7课时 向量法求空间角-2025年高考数学一轮复习课件,共35页。PPT课件主要包含了考试要求,链接教材夯基固本,典例精研核心考点等内容,欢迎下载使用。
第7课时 向量法求空间角
能用空间向量的方法解简单的线线、线面、面面的夹角问题.
体会向量方法在研究几何问题中的作用.
[常用结论]最小角定理如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为平面α内的一条直线,其中θ为OA与OC所成的角,θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cs θ=cs θ1cs θ2.
2.(人教A版选择性必修第一册P37例8改编)已知两平面的法向量分别为(0,-1,3),(2,2,4),则这两个平面夹角的余弦值为________.
4.(人教A版选择性必修第一册P38练习T2改编)PA,PB,PC是从点P出发的三条射线,其中∠APC=∠BPC=45°,∠APB=60°,则直线PC与平面PAB所成角的余弦值为________.
考点二 直线与平面所成的角[典例2] (2022·北京高考)如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.
选条件②:取AB的中点H,连接HM,HN,因为M,N,H分别为A1B1,AC,AB的中点,所以B1B∥MH,CB∥NH,而CB⊥BB1,故NH⊥MH.又因为AB=BC=2,所以NH=BH=1.在△MHB和△MHN中,BM=MN,NH=BH,公共边MH,那么△MHB≌△MHN,因此∠MHN=∠MHB=90°,即MH⊥AB,故B1B⊥AB.在三棱柱ABC-A1B1C1中,BA,BC,BB1两两垂直,故以B为坐标原点,分别以BC,BA,BB1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,
名师点评 利用空间向量求线面角的解题步骤
[跟进训练]2.(2022·浙江高考)如图,已知ABCD和CDEF都是直角梯形,AB∥DC,DC∥EF,AB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角F-DC-B的平面角为60°.设M,N分别为AE,BC的中点.(1)证明:FN⊥AD;(2)求直线BM与平面ADE所成角的正弦值.
考点三 平面与平面的夹角 [典例3] (12分)(2023·新高考Ⅰ卷)如图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4.点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P-A2C2-D2为150°时,求B2P.
名师点评 利用空间向量求平面与平面夹角的解题步骤
巩固课堂所学 · 激发学习思维夯实基础知识 · 熟悉命题方式自我检测提能 · 及时矫正不足
本节课掌握了哪些考点?本节课还有什么疑问点?
课时分层作业(四十八)
相关课件
这是一份新高考数学一轮复习课件 第7章 §7.7 向量法求空间角(含详解),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,因为AB=AP=2等内容,欢迎下载使用。
这是一份2025高考数学一轮复习-7.6.1-向量法求空间角【课件】,共26页。PPT课件主要包含了课堂考点突破等内容,欢迎下载使用。
这是一份新高考数学一轮复习讲练测课件第7章§7.7向量法求空间角 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,因为AB=AP=2等内容,欢迎下载使用。