终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(2份,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(原卷版).doc
    • 解析
      中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(解析版).doc
    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(原卷版)第1页
    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(原卷版)第2页
    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(原卷版)第3页
    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(解析版)第1页
    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(解析版)第2页
    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(2份,原卷版+解析版)

    展开

    这是一份中考数学二轮复习模型解读与提分精练专题12 最值模型-费马点问题(2份,原卷版+解析版),文件包含中考数学二轮复习模型解读与提分精练专题12最值模型-费马点问题原卷版doc、中考数学二轮复习模型解读与提分精练专题12最值模型-费马点问题解析版doc等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
    【模型背景】皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.费马点:三角形内的点到三个顶点距离之和最小的点。
    【模型解读】
    结论1:如图,点M为△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小。
    注意:上述结论成立的条件是△ABC的最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A。(这种情况一般不考,通常三角形的最大顶角都小于120°)
    【模型证明】以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.
    ∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.
    在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).
    连接MN.由△AMB≌△ENB知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.
    ∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.
    此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;
    ∠AMC=360°﹣∠BMC﹣∠AMB=120°.
    费马点的作法:如图3,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点。
    结论2:点P为锐角△ABC内任意一点,连接AP、BP、CP,求xAP+yBP+zCP最小值。(加权费马点)
    【模型证明】第一步,选定固定不变线段;第二步,对剩余线段进行缩小或者放大。
    如:保持BP不变,xAP+yBP+zCP=,如图,B、P、P2、A2四点共线时,取得最小值。
    模型特征:PA+PB+PC(P为动点)
    ①一动点,三定点;②以三角形的三边向外作等边三角形的,再分别将所作等边三角形最外的顶点与已知三角形且与所作等边三角形相对的顶点相连,连线的交点即为费马点;③同时线段前可以有不为1的系数出现,即:加权费马点。
    【最值原理】两点之间,线段最短。
    例1.(2021·山东滨州·中考真题)如图,在中,,,.若点P是内一点,则的最小值为____________.
    例2.(2021·辽宁丹东·中考真题)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足.(例如:等边三角形的费马点是其三条高的交点).若,P为的费马点,则_________;若,P为的费马点,则_________.
    例3.(2022·宜宾·中考真题)如图,和都是等腰直角三角形,,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①;②;③若,则;④在内存在唯一一点P,使得的值最小,若点D在AP的延长线上,且AP的长为2,则.其中含所有正确结论的选项是( )
    A.①②④B.①②③C.①③④D.①②③④
    例4.(2022·江苏·九年级阶段练习)探究题
    (1)知识储备:①如图1,已知点P为等边△ABC外接圆的弧BC上任意一点.求证:PB+PC=PA.
    ②定义:在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
    (2)知识迁移:我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:如图2,在△ABC的外部以BC为边长作等边△BCD及其外接圆,根据(1)的结论,易知线段____的长度即为△ABC的费马距离.
    (3)知识应用:①如图3所示的△ABC(其中均小于),,现取一点P,使点P到三点的距离之和最小,求最小值;
    ②如图4,若三个村庄构成Rt△ABC,其中.现选取一点P打水井,使P点到三个村庄铺设的输水管总长度最小,画出点P所对应的位置,输水管总长度的最小值为________.(直接写结果)
    例5.(2020·重庆中考真题)如图,在中,,,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.
    (1)求证:;(2)如图2所示,在点D运动的过程中,当时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;
    (3)在点D运动的过程中,在线段AD上存在一点P,使的值最小.当的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.
    例6.(2022·河北·九年级专题练习)如图,在平面直角坐标系xy中,点B的坐标为(0,2),点在轴的正半轴上,,OE为△BOD的中线,过B、两点的抛物线与轴相交于、两点(在的左侧).(1)求抛物线的解析式;(2)等边△的顶点M、N在线段AE上,求AE及的长;(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.
    例7.(2022·浙江·九年级专题练习)如图,△ABC中,∠BAC=45°,AB=6,AC=4,P为平面内一点,求最小值
    课后专项训练
    1.(2021·山东淄博市·中考真题)两张宽为的纸条交叉重叠成四边形,如图所示.若,则对角线上的动点到三点距离之和的最小值是__________.
    2.(2022·成都实外九年级阶段练习)如图,在中,,P是内一点,求的最小值为______.
    3.(2022·广东广州·一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC于点D,线段AD上存在一点Q,当QA+QB+QC的值取得最小值,且AQ=2时,则PD=________.
    4.(2019·湖北武汉·中考真题)问题背景:如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
    问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
    5.(2022·重庆·九年级专题练习)如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=_____.
    6.(2022·江苏·九年级专题练习)如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
    7.(2022·陕西·二模)已知,如图在中,,,,在内部有一点D,连接DA、DB、DC.则的最小值是__________.
    8.(2022·陕西·八年级期末)如图,在边长为4的正方形ABCD中,点E在BC边上,且BE=1.点P是AB边上的动点,连接PE,将线段PE绕点E顺时针旋转90°得到线段EQ.若在正方形内还存在一点M,则点M到点A、点D、点Q的距离之和的最小值为_____.
    9.(2022·广东·九年级专题练习)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
    (1)求证:;
    (2)①当M点在何处时,AM+CM的值最小;
    ②当M点在何处时,AM+BM+CM的值最小,并说明理由;
    (3)当AM+BM+CM的最小值为时,求正方形的边长.
    10.(2022·福建九年级开学考试)如图,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,连接、、.设点的坐标为.
    (1)若建立平面直角坐标系,满足原点在线段上,点,.且(),则点的坐标为 ,点的坐标为 ;请直接写出点纵坐标的取值范围是 ;
    (2)若正方形的边长为2,求的长,以及的最小值. (提示:连接:,)
    11.(2022·广东·九年级专题练习)阅读材料:平面几何中的费马问题是十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题.1643年,在一封写给意大利数学家和物理学家托里拆利的私人信件中,费马提出了下面这个极富挑战性和趣味性的几何难题,请求托里拆利帮忙解答:给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最短的点P的位置.托里拆利成功地解决了费马的问题.后来人们就把平面上到一个三角形的三个顶点A,B,C距离之和最小的点称为ABC的费马-托里拆利点,也简称为费马点或托里拆利点.问题解决:
    (1)费马问题有多种不同的解法,最简单快捷的还是几何解法.如图1,我们可以将BPC绕点B顺时针旋转60°得到BDE,连接PD,可得BPD为等边三角形,故PD=PB,由旋转可得DE=PC,因PA+PB+PC=PA+PD+DE,由 可知,PA+PB+PC的最小值与线段 的长度相等;
    (2)如图2,在直角三角形ABC内部有一动点P,∠BAC=90°,∠ACB=30°,连接PA,PB,PC,若AB=2,求PA+PB+PC的最小值;(3)如图3,菱形ABCD的边长为4,∠ABC=60°,平面内有一动点E,在点E运动过程中,始终有∠BEC=90°,连接AE、DE,在ADE内部是否存在一点P,使得PA+PD+PE最小,若存在,请直接写出PA+PD+PE的最小值;若不存在,请说明理由.
    12.(2022·山西·九年级专题练习)请阅读下列材料,并完成相应的任务:
    任务:(1)横线处填写的条件是__________;
    (2)已知正方形内一动点到三点的距离之和的最小值为,求此正方形的边长.
    13.(2022·山西·八年级阶段练习)综合与实践
    材料一:“转化思想”是几何变换中常用的思想,例如将图形进行旋转变换,实现图形位置的“转化”,把一般情形转化为特殊情形,使问题化难为易.它是一种以变化的、运动的观点来处理孤立的、离散问题的思想.
    材料二:皮埃尔·德·费马(如图),世纪法国律师和业余数学家,被誉为“业余数学家之王”.年勒·笛卡儿邀请费马思考关于三个顶点距离为定值的问题,费马经过思考并由此推出费马点的相关结论.
    定义:若一个三角形的最大内角小于则在其内部有一点所对三角形三边的张角均为此时该点叫做这个三角形的费马点.如图1,当三个内角均小于时,费马点在内部,此时的值最小.

    (1)如图2,等边三角形内有一点若点到顶点的距离分别为,求的度数.为了解决本题,小林利用“转化”思想,将绕顶点旋转到处,连接此时这样就可以通过旋转变换,将三条线段,转化到一个三角形中,从而求出 ;
    (2)如图3,在图1的基础上延长,在射线上取点,连接.使求证:;(3)如图4,在中,点为的费马点,连接,请直接写出的值.
    14.(2022·重庆綦江·九年级期末)如图,在菱形ABCD中,∠ABC=60°,点E、F分别是AB、BC上的动点,连接DE、DF、EF.
    (1)如图1,连接AF,若AF⊥BC,E为AB的中点,且EF=5,求DF的长;
    (2)如图2,若BE=BF,G为DE的中点,连接AF、AG、FG,求证:AG⊥FG;
    (3)如图3,若AB=7,将△BEF沿EF翻折得到△EFP(始终保持点P在菱形ABCD的内部),连接AP、BP及CP,请直接写出当PA+PB+PC值最小时PB的长.
    15.(2022·广东·九年级专题练习)如图,抛物线经点,与轴相交于点.
    1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点到二次函数图象的垂直距离是线段的长.已知点为抛物线对称轴上的一点,且在轴上方,点为平面内一点,当以为顶点的四边形是边长为4的菱形时,请求出点到二次函数图象的垂直距离.(3)在(2)中,当点到二次函数图象的垂直距离最小时,在为顶点的菱形内部是否存在点,使得之和最小,若存在,请求出最小值;若不存在,请说明理由.
    费马,17世纪德国的业余数学家,被誉为“业余数学家之王”,他独立于笛卡儿发现了解析几何的基本原理.
    费马得到过这样的结论:如图①,当三角形的三个角均小于时,在三角形内有一点,使得,且该点到三角形三个顶点的距离之和最小,这个点被称为费马点.
    证明:如图②,把绕点逆时针旋转得到,连接,则,
    ________,
    为等边三角形.


    点可看成是线段绕点逆时针旋转而得的定点,为定长,
    当四点在同一直线上时,最小,
    这时,

    .

    相关试卷

    中考数学二轮复习模型解读与提分精练专题11 最值模型-阿氏圆问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习模型解读与提分精练专题11 最值模型-阿氏圆问题(2份,原卷版+解析版),文件包含中考数学二轮复习模型解读与提分精练专题11最值模型-阿氏圆问题原卷版doc、中考数学二轮复习模型解读与提分精练专题11最值模型-阿氏圆问题解析版doc等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    中考数学二轮复习模型解读与提分精练专题10 最值模型-胡不归问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习模型解读与提分精练专题10 最值模型-胡不归问题(2份,原卷版+解析版),文件包含中考数学二轮复习模型解读与提分精练专题10最值模型-胡不归问题原卷版doc、中考数学二轮复习模型解读与提分精练专题10最值模型-胡不归问题解析版doc等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。

    中考数学二轮复习模型解读与提分精练专题09 最值模型-将军饮马(2份,原卷版+解析版):

    这是一份中考数学二轮复习模型解读与提分精练专题09 最值模型-将军饮马(2份,原卷版+解析版),文件包含中考数学二轮复习模型解读与提分精练专题09最值模型-将军饮马原卷版doc、中考数学二轮复习模型解读与提分精练专题09最值模型-将军饮马解析版doc等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map