所属成套资源:中考数学一轮复习考点题型训练 (2份,原卷版+解析版)
中考数学一轮复习考点题型训练专题15 二次函数(2份,原卷版+解析版)
展开专题15 二次函数考点一:二次函数之定义、图像以及性质知识回顾二次函数的定义:形如的函数叫做二次函数。二次函数的图像:二次函数的图像是一条抛物线。二次函数的性质与图像:①若二次函数是一般形式时,则二次函数与轴的交点坐标为。若,则二次函数与轴交于正半轴;若,则二次函数与轴交于负半轴。②二次函数开口向上时,离对称轴越远的点函数值越大;二次函数开口向下时,离对称轴越远的函数值越小。③二次函数函数值相等的两个点一定关于对称轴对称。④二次函数的一般式化为顶点式:利用一元二次方程的配方法。微专题1.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )A.正比例函数关系 B.一次函数关系 C.反比例函数关系 D.二次函数关系2.(2022•株洲)已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为( )A. B. C. D.3.(2022•阜新)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是( )A.点(0,2)在函数图象上 B.开口方向向上 C.对称轴是直线x=1 D.与直线y=3x有两个交点4.(2022•衢州)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为( )A.或4 B.或﹣ C.﹣或4 D.﹣或45.(2022•荆门)抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )A.0≤x1<x2 B.x2<x1≤0 C.x2<x1≤0或0≤x1<x2 D.以上都不对6.(2022•兰州)已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是( )A.x<1 B.x>1 C.x<2 D.x>27.(2022•广州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣2,下列结论正确的是( )A.a<0 B.c>0 C.当x<﹣2时,y随x的增大而减小 D.当x>﹣2时,y随x的增大而减小8.(2022•郴州)关于二次函数y=(x﹣1)2+5,下列说法正确的是( )A.函数图象的开口向下 B.函数图象的顶点坐标是(﹣1,5) C.该函数有最大值,最大值是5 D.当x>1时,y随x的增大而增大9.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是( )A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)10.(2022•岳阳)已知二次函数y=mx2﹣4m2x﹣3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤﹣3,则m的取值范围是( )A.m≥1或m<0 B.m≥1 C.m≤﹣1或m>0 D.m≤﹣111.(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3 B.y2<y3<y1 C.y3<y1<y2 D.y2<y1<y312.(2022•新疆)已知抛物线y=(x﹣2)2+1,下列结论错误的是( )A.抛物线开口向上 B.抛物线的对称轴为直线x=2 C.抛物线的顶点坐标为(2,1) D.当x<2时,y随x的增大而增大13.(2022•盐城)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是 .14.(2022•长春)已知二次函数y=﹣x2﹣2x+3,当a≤x≤时,函数值y的最小值为1,则a的值为 .15.(2022•黔东南州)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=﹣在同一坐标系内的大致图象为( )A. B. C. D.16.(2022•湖北)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过( )A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限17.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )A.0<m≤2 B.﹣2≤m<0 C.m>2 D.m<﹣218.(2022•呼和浩特)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD只有一个公共点,则m的取值范围是 .19.(2022•包头)已知实数a,b满足b﹣a=1,则代数式a2+2b﹣6a+7的最小值等于( )A.5 B.4 C.3 D.220.(2022•贺州)已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a的值为( )A.1 B.2 C.3 D.421.(2022•嘉兴)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为( )A.1 B. C.2 D.22.(2022•凉山州)已知实数a、b满足a﹣b2=4,则代数式a2﹣3b2+a﹣14的最小值是 .考点二:二次函数之函数变换知识回顾二次函数的平移:①若函数进行左右平移,则在函数的自变量上进行加减。左加右减。②若函数进行上下平移,则在函数解析式整体后面进行加减。上加下减。一次函数的对称变换:①若二次函数关于轴对称,则自变量不变,函数值变为相反数。②若二次函数关于轴对称,则函数值不变,自变量变成相反数。③若二次函数关于原点对称,则自变量与函数值均变成相反数。微专题23.(2022•通辽)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣124.(2022•玉林)小嘉说:将二次函数y=x2的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A.1个 B.2个 C.3个 D.4个25.(2022•泸州)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是( )A.y=﹣x2+x B.y=﹣x2﹣4 C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+126.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是( )A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2 D.y=(x﹣3)227.(2022•牡丹江)抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是 .28.(2022•黑龙江)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为 .29.(2022•黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是 .(2022•荆州)规定:两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为 .考点三:二次函数之二次函数综合知识回顾二次函数与一元二次方程:①若二次函数与轴有两个交点⇔一元二次方程有两个不相等的实数根⇔。②若二次函数与轴只有一个交点⇔一元二次方程有两个相等的实数根⇔。③若二次函数与轴没有交点⇔一元二次方程没有实数根⇔。④若二次函数与直线相交,则一元二次方程为。交点情况与方程的解的情况同与轴相交时一样。二次函数与不等式(组)若二次函数与一次函数存在交点,则不等式:的解集取二次函数图像在上方的部分所对应的自变量取值范围;的解集取二次函数图像在下方的部分所对应的自变量取值范围。二次函数的一些特殊的自变量的函数值:①当时所对应的函数值为。②当时所对应的函数值为。③当时所对应的函数值为。④当时所对应的函数值为。对称轴的特殊值:①若对称轴为直线时,则。②若对称轴为直线时,则。③判断与0的大小关系时,看对称轴与的位置关系。④判断与0的大小关系时,看对称轴与的位置关系。微专题31.(2022•巴中)函数y=|ax2+bx+c|(a>0,b2﹣4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2﹣4ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是( )①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.A.①② B.①③ C.②③④ D.①③④32.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是( )A.4个 B.3个 C.2个 D.1个33.(2022•黄石)已知二次函数y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图象经过点(1,3)时,方程ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是( ) 第33题 第34题A.0 B.1 C.2 D.334.(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有( )A.1个 B.2个 C.3个 D.4个35.(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为( )A.1个 B.2个 C.3个 D.4个36.(2022•绵阳)如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为( )A.1个 B.2个 C.3个 D.4个37.(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是( ) 第37题 第38题 第39题A.1 B.2 C.3 D.438.(2022•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是( )A.①③ B.②④ C.③④ D.②③(2022•广安)已知抛物线y=ax2+bx+c的对称轴为x=1,与x轴正半轴的交点为A(3,0),其部分图象如图所示,有下列结论:①abc>0; ②2c﹣3b<0; ③5a+b+2c=0;④若B(,y1)、C(,y2)、D(﹣,y3)是抛物线上的三点,则y1<y2<y3.其中正确结论的个数有( )A.1 B.2 C.3 D.440.(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是( )A.2 B.3 C.4 D.541.(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是( ) 第41题 第42题A.1个 B.2个 C.3个 D.4个42.(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 .(填序号,多选、少选、错选都不得分)43.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c>﹣x+c的解集为0<x<x1.其中正确结论的个数是( )A.4 B.3 C.2 D.144.(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( ) 第44题 第45题A.2个 B.3个 C.4个 D.5个45.(2022•达州)二次函数y=ax2+bx+c的部分图象如图所示,与y轴交于(0,﹣1),对称轴为直线x=1.下列结论:①abc>0;②a>;③对于任意实数m,都有m(am+b)>a+b成立;④若(﹣2,y1),(,y2),(2,y3)在该函数图象上,则y3<y2<y1;⑤方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4.其中正确结论有( )个.A.2 B.3 C.4 D.5考点四:二次函数之实际应用知识回顾利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题。解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量的取值范围。几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论。构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题。微专题46.(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是( )A.方案1 B.方案2 C.方案3 D.方案1或方案247.(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm,与跳台底部所在水平面的竖直高度为ym,y与x的函数关系式为y=(0≤x≤20.5),当她与跳台边缘的水平距离为 m时,竖直高度达到最大值.48.(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣x2+x+,则铅球推出的水平距离OA的长是 m.49.(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为 s时,小球达到最高点.50.(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额﹣总成本). 第50题 第51题51.(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.52.(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为 m2. 第52题 第53题53.(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t= s.54.(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是 m.55.(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高 m时,水柱落点距O点4m.形式一般式:顶点式的符号开口方向开口向上开口向下开口向上开口向下对称轴,若同号,则对称轴在轴左边;若异号,则对称轴在轴右边。简称左同右异。,若,对称轴在轴右边;若,对称轴在轴左边,最值当时取得最小值当时取得最大值当时取得最小值当时取得最大值顶点坐标增减性图像在对称轴左边随的增大而减小;图像在对称轴右边随的增大而增大;图像在对称轴左边随的增大而增大;图像在对称轴右边随的增大而减小;图像在对称轴左边随的增大而减小;图像在对称轴右边随的增大而增大;图像在对称轴左边随的增大而增大;图像在对称轴右边随的增大而减小;