终身会员
搜索
    上传资料 赚现金

    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(2份,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(原卷版).doc
    • 解析
      中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(解析版).doc
    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(原卷版)第1页
    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(原卷版)第2页
    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(原卷版)第3页
    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(解析版)第1页
    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(解析版)第2页
    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(2份,原卷版+解析版)

    展开

    这是一份中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(2份,原卷版+解析版),文件包含中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题原卷版doc、中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题解析版doc等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。

    (1)当F为BE的中点时,求证:AM=CE;
    (2)若=2,求的值;
    (3)若MN∥BE,求的值.
    【答案】(1)见解析
    (2)
    (3)
    【分析】(1)根据矩形的性质,证明△BMF≌ △ECF,得BM=CE,再利用点E为CD的 中点,即可证明结论;
    (2)利用△BMF∽△ECF,得,从而求出BM的长,再利用△ANM∽△BMC ,得 ,求出AN的长,可得答案;
    (3)首先利用同角的余角相等得 ∠CBF= ∠CMB,则tan∠CBF=tan∠CMB,得 ,可得BM的长,由(2)同理可得答案.
    (1)
    证明:∵F为BE的中点,
    ∴BF=EF,
    ∵四边形ABCD是矩形,
    ∴AB∥CD,AB=CD
    ∴∠BMF=∠ECF,
    ∵∠BFM=∠EFC,
    ∴△BMF≌△ECF(AAS),
    ∴BM=CE,
    ∵点E为CD的中点,
    ∴CE=CD,
    ∵AB=CD,
    ∴,
    ∴,
    ∴AM=CE;
    (2)
    ∵∠BMF=∠ECF,∠BFM=∠EFC,
    ∴△BMF∽△ECF,
    ∴,
    ∵CE=3,
    ∴BM=,
    ∴AM=,
    ∵CM⊥MN,
    ∴∠CMN=90°,
    ∴∠AMN+∠BMC=90°,
    ∵∠AMN+∠ANM=90°,
    ∴∠ANM=∠BMC,
    ∵∠A=∠MBC,
    ∴△ANM∽△BMC,
    ∴,
    ∴,
    ∴,
    ∴DN=AD﹣AN=4﹣=,
    ∴;
    (3)
    ∵MN∥BE,
    ∴∠BFC=∠CMN,
    ∴∠FBC+∠BCM=90°,
    ∵∠BCM+∠BMC=90°,
    ∴∠CBF=∠CMB,
    ∴tan∠CBF=tan∠CMB,
    ∴,
    ∴,
    ∴,
    ∴,
    由(2)同理得,,
    ∴,
    解得:AN=,
    ∴DN=AD﹣AN=4﹣=,
    ∴.
    【点睛】本题是相似形综合题,主要考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,求出BM的长是解决(2)和(3)的关键.
    22.(2022·贵州铜仁·中考真题)如图,在四边形中,对角线与相交于点O,记的面积为,的面积为.
    (1)问题解决:如图①,若AB//CD,求证:
    (2)探索推广:如图②,若与不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.
    (3)拓展应用:如图③,在上取一点E,使,过点E作交于点F,点H为的中点,交于点G,且,若,求值.
    【答案】(1)见解析;(2)(1)中的结论成立,理由见解析:(3)
    【分析】(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,求出,然后根据三角形面积公式求解即可;
    (2)同(1)求解即可;
    (3)如图所示,过点A作交OB于M,取BM中点N,连接HN,先证明△OEF≌△OCD,得到OD=OF,证明△OEF∽△OAM,得到,设,则,证明△OGF∽△OHN,推出,,则,由(2)结论求解即可.
    【详解】解:(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,
    ∴,
    ∴,

    ∵∠DOE=∠BOF,
    ∴;
    ∴;
    (2)(1)中的结论成立,理由如下:
    如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,
    ∴,
    ∴,

    ∵∠DOE=∠BOF,
    ∴;
    ∴;
    (3)如图所示,过点A作交OB于M,取BM中点N,连接HN,
    ∵,
    ∴∠ODC=∠OFE,∠OCD=∠OEF,
    又∵OE=OC,
    ∴△OEF≌△OCD(AAS),
    ∴OD=OF,
    ∵,
    ∴△OEF∽△OAM,
    ∴,
    设,则,
    ∵H是AB的中点,N是BM的中点,
    ∴HN是△ABM的中位线,
    ∴,
    ∴△OGF∽△OHN,
    ∴,
    ∵OG=2GH,
    ∴,
    ∴,
    ∴,,
    ∴,
    由(2)可知.
    【点睛】本题主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,正确作出辅助线是解题的关键.
    23.(2022·内蒙古包头·中考真题)如图,在平行四边形中,是一条对角线,且,,,是边上两点,点在点的右侧,,连接,的延长线与的延长线相交于点.
    (1)如图1,是边上一点,连接,,与相交于点.
    ①若,求的长;
    ②在满足①的条件下,若,求证:;
    (2)如图2,连接,是上一点,连接.若,且,求的长.
    【答案】(1)①;②证明见解析
    (2)
    【分析】(1)①解:根据平行四边形的性质可证,得到,再根据,,,结合平行四边形的性质求出的长,代入比例式即可求出的长;
    ②先根据证明可得,再根据,求出,进一步证明,最后利用等腰三角形的三线合一可证明结论.
    (2)如图,连接,先根据证明,再结合,说明,利用平行线分线段成比例定理可得,接着证明,可得到,设,则,根据构建方程求出,最后利用可得结论.
    (1)
    ①解:如图,
    ∵四边形是平行四边形,,,
    ∴,,,,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴的长为.
    ②证明:∵,
    ∴,
    ∵,
    在和中,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴.
    (2)
    如图,连接,
    ∵,,
    ∴,
    ∴,
    ∵,
    在和中,
    ∴,
    ∴,

    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∴,
    设,则,
    ∵,
    ∴,
    ∴,
    即,
    ∴,
    ∴.
    ∴的长为.
    【点睛】本题考查了平行四边形的性质,相似三角形的判定及性质,全等三角形的判定及性质,等腰三角形的三线合一,平行线的判定及性质,平行线分线段成比例定理等知识.灵活运用相似三角形和全等三角形的判定及性质是解答本题的关键.
    24.(2022·江苏泰州·中考真题)已知:△ABC中,D 为BC边上的一点.
    (1)如图①,过点D作DE∥AB交AC边于点E,若AB=5,BD=9,DC=6,求DE的长;
    (2)在图②,用无刻度的直尺和圆规在AC边上做点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
    (3)如图③,点F在AC边上,连接BF、DF,若∠DFA=∠A,△FBC的面积等于,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.
    【答案】(1)2
    (2)图见详解
    (3)直线BC与⊙F相切,理由见详解
    【分析】(1)由题意易得,则有,然后根据相似三角形的性质与判定可进行求解;
    (2)作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;
    (3)作BR∥CF交FD的延长线于点R,连接CR,证明四边形ABRF是等腰梯形,推出AB=FR,由CF∥BR,推出,推出CD⊥DF,然后问题可求解.
    (1)
    解:∵DE∥AB,
    ∴,
    ∴,
    ∵AB=5,BD=9,DC=6,
    ∴,
    ∴;
    (2)
    解:作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;
    如图所示:点F即为所求,
    (3)
    解:直线BC与⊙F相切,理由如下:
    作BR∥CF交FD的延长线于点R,连接CR,如图,
    ∵∠DFA=∠A,
    ∴四边形ABRF是等腰梯形,
    ∴,
    ∵△FBC的面积等于,
    ∴,
    ∴CD⊥DF,
    ∵FD是⊙F的半径,
    ∴直线BC与⊙F相切.
    【点睛】本题主要考查相似三角形的性质与判定、平行线的性质与判定及切线的判定,熟练掌握相似三角形的性质与判定、平行线的性质与判定及切线的判定是解题的关键.
    25.(2022·湖南岳阳·中考真题)如图,和的顶点重合,,,,.
    (1)特例发现:如图1,当点,分别在,上时,可以得出结论:______,直线与直线的位置关系是______;
    (2)探究证明:如图2,将图1中的绕点顺时针旋转,使点恰好落在线段上,连接,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
    (3)拓展运用:如图3,将图1中的绕点顺时针旋转,连接、,它们的延长线交于点,当时,求的值.
    【答案】(1) ,垂直
    (2)成立,理由见解析
    (3)
    【分析】(1)解直角三角形求出,,可得结论;
    (2)结论不变,证明,推出,,可得结论;
    (3)如图3中,过点作于点,设交于点,过点作于点求出,,可得结论.
    (1)
    解:在中,,,,
    ∴,
    在中,,,
    ∴,
    ∴,,
    ∴,此时,
    故答案为:,垂直;
    (2)
    结论成立.
    理由:∵,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴;
    (3)
    如图3中,过点作于点,设交于点,过点作于点.
    ∵,,
    ∴,
    ∴.
    ∵,
    ∴,,
    当时,四边形是矩形,
    ∴,,
    设,则,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】本题属于三角形综合题,考查了解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.
    一、解答题
    1.(2022·江苏镇江·中考真题)已知,点、、、分别在正方形的边、、、上.
    (1)如图1,当四边形是正方形时,求证:;
    (2)如图2,已知,,当、的大小有_________关系时,四边形是矩形;
    (3)如图3,,、相交于点,,已知正方形的边长为16,长为20,当的面积取最大值时,判断四边形是怎样的四边形?证明你的结论.
    【答案】(1)见解析
    (2)
    (3)平行四边形,证明见解析
    【分析】(1)利用平行四边形的性质证得,根据角角边证明.
    (2)当,证得,是等腰直角三角形,∠HEF=∠EFG=90°,即可证得四边形EFGH是矩形.
    (3)利用正方形的性质证得为平行四边形,过点作,垂足为点,交于点,由平行线分线段成比例,设,,,则可表示出,从而把△OEH的面积用x的代数式表示出来,根据二次函数求出最大值,则可得OE=OG,OF=OH,即可证得平行四边形.
    (1)
    ∵四边形为正方形,
    ∴,
    ∴.
    ∵四边形为正方形,
    ∴,,
    ∴,
    ∴.
    在和中,
    ∵,,,
    ∴.
    ∴.
    ∴;
    (2)
    ;证明如下:
    ∵四边形为正方形,
    ∴,AB=BC=AD=CD,
    ∵AE=AH,CF=CG,AE=CF,
    ∴AH=CG,
    ∴,
    ∴EH=FG.
    ∵AE=CF,
    ∴AB-AE=BC-CF,即BE=BF,
    ∴是等腰直角三角形,
    ∴∠BEF=∠BFE=45°,
    ∵AE=AH,CF=CG,
    ∴∠AEH=∠CFG=45°,
    ∴∠HEF=∠EFG=90°,
    ∴EH∥FG,
    ∴四边形EFGH是矩形.
    (3)
    ∵四边形为正方形,
    ∴.
    ∵,,
    ∴四边形为平行四边形.
    ∴.
    ∴.
    过点作,垂足为点,交于点,
    ∴.
    ∵,
    设,,,则,
    ∴.
    ∴.
    ∴当时,的面积最大,
    ∴,,
    ∴四边形是平行四边形.
    【点睛】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.
    2.(2022·山东东营·中考真题)和均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿运动,运动到点B、C停止.
    (1)如图1,当点E、D分别与点A、B重合时,请判断:线段的数量关系是____________,位置关系是____________;
    (2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;
    (3)当点D运动到什么位置时,四边形的面积是面积的一半,请直接写出答案;此时,四边形是哪种特殊四边形?请在备用图中画出图形并给予证明.
    【答案】(1)CD=EF,CD∥EF
    (2)CD=EF,CD∥EF,成立,理由见解析
    (3)点D运动到BC的中点时,是菱形,证明见解析
    【分析】(1)根据和均为等边三角形,得到AF=AD,AB=BC,∠FAD=∠ABC=60°,根据E、D分别与点A、B重合,得到AB=AD,EF=AF,CD=BC,∠FAD=∠FAB,推出CD=EF,CD∥EF;
    (2)连接BF,根据∠FAD=∠BAC=60°,推出∠FAB=∠DAC,根据AF=AD,AB=AC,推出△AFB≌△ADC,得到∠ABF=∠ACD=60°,BF=CD,根据AE=BD,推出BE=CD,得到BF=BE,推出△BFE是等边三角形,得到BF=EF,∠FEB=60°,推出CD=EF, CD∥EF;
    (3)过点E作EG⊥BC于点G,设△ABC的边长为a,AD=h,根据AB=BC,BD=CD= BC= a, BD=AE,推出AE=BE= AB,根据AB=AC, 推出AD⊥BC,得到EG∥AD,推出△EBG∽△ABD,推出,得到= h,根据CD=EF, CD∥EF,推出四边形CEFD是平行四边形,推出,根据EF=BD,EF∥BD,推出四边形BDEF是平行四边形,根据BF=EF,推出是菱形.
    (1)
    ∵和均为等边三角形,
    ∴AF=AD,AB=BC,∠FAD=∠ABC=60°,
    当点E、D分别与点A、B重合时,AB=AD,EF=AF,CD=BC,∠FAD=∠FAB,
    ∴CD=EF,CD∥EF;
    故答案为:CD=EF,CD∥EF;
    (2)
    CD=EF,CD∥EF,成立.
    证明:
    连接BF,
    ∵∠FAD=∠BAC=60°,
    ∴∠FAD-∠BAD=∠BAC-∠BAD,
    即∠FAB=∠DAC,
    ∵AF=AD,AB=AC,
    ∴△AFB≌△ADC(SAS),
    ∴∠ABF=∠ACD=60°,BF=CD,
    ∵AE=BD,
    ∴BE=CD,
    ∴BF=BE,
    ∴△BFE是等边三角形,
    ∴BF=EF,∠FEB=60°,
    ∴CD=EF,BC∥EF,
    即CD∥EF,
    ∴CD=EF, CD∥EF;
    (3)
    如图,当点D运动到BC的中点时,四边形的面积是面积的一半,此时,四边形是菱形.
    证明:
    过点E作EG⊥BC于点G,设△ABC的边长为a,AD=h,
    ∵AB=BC,BD=CD= BC= a, BD=AE,
    ∴AE=BE= AB,
    ∵AB=AC,
    ∴AD⊥BC,
    ∴EG∥AD,
    ∴△EBG∽△ABD,
    ∴,
    ∴= h,
    由(2)知,CD=EF, CD∥EF,
    ∴四边形CEFD是平行四边形,
    ∴,
    此时,EF=BD,EF∥BD,
    ∴四边形BDEF是平行四边形,
    ∵BF=EF,
    ∴是菱形.
    【点睛】本题主要考查了等边三角形判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,相似三角形的判定与性质,菱形的判定,解决问题的关键是熟练掌握等边三角形的判定和性质,全等三角形的判定和性质,平行四边形判定和性质,相似三角形的判定和性质,菱形的判定.
    3.(2022·辽宁鞍山·中考真题)如图,在中,,,点在直线上,连接,将绕点逆时针旋转,得到线段,连接,.
    (1)求证:;
    (2)当点在线段上(点不与点,重合)时,求的值;
    (3)过点作交于点,若,请直接写出的值.
    【答案】(1)证明见解析;
    (2)
    (3)或
    【分析】(1)作AH⊥BC于H,可得BH=AB,BC=2BH,进而得出结论;
    (2)证明△ABD∽△CBE,进而得出结果;
    (3)当点D在线段AC上时,作BF⊥AC,交CA的延长线于F,作AG⊥BD于G,设AB=AC=3a,则AD=2a,解直角三角形BDF,求得BD的长,根据△DAG∽△DBF求得AQ,进而求得AN,进一步得出结果;当点D在AC的延长线上时,设AB=AC=2a,则AD=4a,同样方法求得结果.
    (1)
    证明:如图1,
    作AH⊥BC于H,
    ∵AB=AB,
    ∴∠BAH=∠CAH=∠BAC=×120°=60°,BC=2BH,
    ∴sin60°=,
    ∴BH=AB,
    ∴BC=2BH=AB;
    (2)
    解:∵AB=AC,
    ∴∠ABC=∠ACB=,
    由(1)得,,
    同理可得,
    ∠DBE=30°,,
    ∴∠ABC=∠DBE,,
    ∴∠ABC−∠DBC=∠DBE−∠DBC,
    ∴∠ABD=∠CBE,
    ∴△ABD∽△CBE,
    ∴;
    (3)
    :如图2,
    当点D在线段AC上时,
    作BF⊥AC,交CA的延长线于F,作AG⊥BD于G,
    设AB=AC=3a,则AD=2a,
    由(1)得,,
    在Rt△ABF中,∠BAF=180°−∠BAC=60°,AB=3a,
    ∴AF=3a•cs60°=,BF=3a•sin60°=,
    在Rt△BDF中,DF=AD+AF=,

    ∵∠AGD=∠F=90°,∠ADG=∠BDF,
    ∴△DAG∽△DBF,
    ∴,
    ∴,
    ∴,
    ∵ANDE,
    ∴∠AND=∠BDE=120°,
    ∴∠ANG=60°,
    ∴,
    ∴,
    如图3,
    当点D在AC的延长线上时,
    设AB=AC=2a,则AD=4a,
    由(1)得,
    CE=,
    作BR⊥CA,交CA的延长线于R,作AQ⊥BD于Q,
    同理可得,
    AR=a,BR=,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    综上所述:的值为或.
    【点睛】本题考查了等腰三角形的性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是正确分类和较强的计算能力.
    4.(2022·浙江衢州·中考真题)如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结交于点,平分交于点G.
    (1)求证:.
    (2)若.
    ①求菱形的面积.
    ②求的值.
    (3)若,当的大小发生变化时(),在上找一点,使为定值,说明理由并求出的值.
    【答案】(1)见解析
    (2)①24,②
    (3)=,理由见解析
    【分析】(1)由菱形的性质可证得∠CBD=∠ABD=∠ABC,由平分交于点G,得到∠CBG=∠EBG=∠CBE,进一步即可得到答案;
    (2)①连接AC交BD于点O,Rt△DOC中,OC=,求得AC=8,由菱形的面积公式可得答案;②由BGAC,得到,DH=HG,DG=2DH,又由DG=2GE,得到EG=DH=HG,则,再证明△CDH∽△AEH,CH=AC=,OH=OC-CH=4-=,利用正切的定义得到答案;
    (3)过点G作GTBC,交AE于点T,△BGE∽△AHE,得AB=BE=5,则EG=GH,再证△DOH∽△DBG,得DH=GH=EG,由△EGT∽△EDA得,GT=,为定值,即可得到ET的值.
    (1)
    证明:∵四边形ABCD是菱形,
    ∴BC=DC,ABCD,
    ∴∠BDC=∠CBD,∠BDC=∠ABD,
    ∴∠CBD=∠ABD=∠ABC,
    ∵平分交于点G,
    ∴∠CBG=∠EBG=∠CBE,
    ∴∠CBD+∠CBG=(∠ABC+∠CBE)=×180°=90°,
    ∴∠DBG=90°;
    (2)
    解:①如图1,连接AC交BD于点O,
    ∵四边形ABCD是菱形,BD=6,
    ∴OD=BD=3,AC⊥BD,
    ∴∠DOC=90°,
    在Rt△DOC中,OC=,
    ∴AC=2OC=8,
    ∴,
    即菱形的面积是24.
    ②如图2,连接AC,分别交BD、DE于点O、H,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∵∠DBG=90°
    ∴BG⊥BD,
    ∴BGAC,
    ∴,
    ∴DH=HG,DG=2DH,
    ∵DG=2GE,
    ∴EG=DH=HG,
    ∴,
    ∵ABCD,
    ∴∠DCH=EAH,∠CDH=∠AEH,
    ∴△CDH∽△AEH,
    ∴,
    ∴CH=AC=,
    ∴OH=OC-CH=4-=,
    ∴tan∠BDE=;
    (3)
    如图3,过点G作GTBC交AE于点T,此时ET=.
    理由如下:由题(1)可知,当∠DAB的大小发生变化时,始终有BGAC,
    ∴△BGE∽△AHE,
    ∴,
    ∵AB=BE=5,
    ∴EG=GH,
    同理可得,△DOH∽△DBG,
    ∴,
    ∵BO=DO,
    ∴DH=GH=EG,
    ∵GTBC,
    ∴GTAD,
    ∴△EGT∽△EDA,
    ∴,
    ∵AD=AB=5,
    ∴GT=,为定值,
    此时ET=AE=(AB+BE)=.
    【点睛】此题主要考查了相似三角形的判定和性质、菱形的性质、勾股定理、锐角三角函数等知识,熟练掌握相似三角形的判定和性质是解题的关键.
    5.(2022·山东枣庄·中考真题)已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.
    (1)如图①,若PQ⊥BC,求t的值;
    (2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?
    【答案】(1)当t=2时,PQ⊥BC
    (2)当t的值为时,四边形QPCP′为菱形
    【分析】(1)根据勾股定理求出,根据相似三角形的性质列出比例式,计算即可.
    (2)作于,于,证明出为直角三角形,进一步得出和为等腰直角三角形,再证明四边形为矩形,利用勾股定理在、中,结合四边形为菱形,建立等式进行求解.
    【详解】(1)解:(1)如图①,
    ∵∠ACB=90°,AC=BC=4cm,
    ∴AB==(cm),
    由题意得,AP=tcm,BQ=tcm,
    则BP=(4﹣t)cm,
    ∵PQ⊥BC,
    ∴∠PQB=90°,
    ∴∠PQB=∠ACB,
    ∴PQAC,


    ∴=,
    ∴,
    解得:t=2,
    ∴当t=2时,PQ⊥BC.
    (2)解:作于,于,如图,
    ,,
    ,,
    为直角三角形,

    和为等腰直角三角形,
    ,,

    四边形为矩形,



    在中,,
    在中,,
    四边形为菱形,


    ,(舍去).
    的值为.
    【点睛】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.
    6.(2022·江苏南通·中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.
    (1)当点E在上时,作,垂足为M,求证;
    (2)当时,求的长;
    (3)连接,点E从点B运动到点D的过程中,试探究的最小值.
    【答案】(1)见详解
    (2)或
    (3)
    【分析】(1)证明即可得证.
    (2)分情况讨论,当点E在BC上时,借助,在中求解;当点E在CD上时,过点E作EG⊥AB于点G,FH⊥AC于点H,借助并利用勾股定理求解即可.
    (3)分别讨论当点E在BC和CD上时,点F所在位置不同,DF的最小值也不同,综合比较取最小即可.
    (1)
    如图所示,
    由题意可知,,,

    由旋转性质知:AE=AF,
    在和中,



    (2)
    当点E在BC上时,
    在中,,,
    则,
    在中,,,
    则,
    由(1)可得,,
    在中,,,
    则,
    当点E在CD上时,如图,
    过点E作EG⊥AB于点G,FH⊥AC于点H,
    同(1)可得,

    由勾股定理得;
    故CF的长为或.
    (3)
    如图1所示,当点E在BC边上时,过点D作于点H,
    由(1)知,,
    故点F在射线MF上运动,且点F与点H重合时,DH的值最小.
    在与中,



    即,
    ,,

    在与中,



    即,

    故的最小值;
    如图2所示,当点E在线段CD上时,将线段AD绕点A顺时针旋转的度数,得到线段AR,连接FR,过点D作,,
    由题意可知,,
    在与中,



    故点F在RF上运动,当点F与点K重合时,DF的值最小;
    由于,,,
    故四边形DQRK是矩形;




    故此时DF的最小值为;
    由于,故DF的最小值为.
    【点睛】本题考查矩形的性质、全等三角形的判定和性质、相似三角形的性质和判定、勾股定理、解直角三角形,解决本题的关键是各性质定理的综合应用.
    7.(2022·山东菏泽·中考真题)如图1,在中,于点D,在DA上取点E,使,连接BE、CE.
    (1)直接写出CE与AB的位置关系;
    (2)如图2,将绕点D旋转,得到(点,分别与点B,E对应),连接,在旋转的过程中与的位置关系与(1)中的CE与AB的位置关系是否一致?请说明理由;
    (3)如图3,当绕点D顺时针旋转30°时,射线与AD、分别交于点G、F,若,求的长.
    【答案】(1)CE⊥AB,理由见解析
    (2)一致,理由见解析
    (3)
    【分析】(1)由等腰直角三角形的性质可得∠ABC=∠DAB=45°,∠DCE=∠DEC=∠AEH=45°,可得结论;
    (2)通过证明,可得,由余角的性质可得结论;
    (3)由等腰直角的性质和直角三角形的性质可得,即可求解.
    【详解】(1)如图,延长CE交AB于H,
    ∵∠ABC=45°,AD⊥BC,
    ∴∠ADC=∠ADB=90°,∠ABC=∠DAB=45°,
    ∵DE=CD,
    ∴∠DCE=∠DEC=∠AEH=45°,
    ∴∠BHC=∠BAD+∠AEH=90°,
    ∴CE⊥AB;
    (2)在旋转的过程中与的位置关系与(1)中的CE与AB的位置关系是一致的,理由如下:
    如图2,延长交于H,
    由旋转可得:CD=,=AD,
    ∵∠ADC=∠ADB=90°,
    ∴,
    ∵,
    ∴,

    ∵+∠DGC=90°,∠DGC=∠AGH,
    ∴∠DA+∠AGH=90°,
    ∴∠AHC=90°,

    (3)如图3,过点D作DH于点H,
    ∵△BED绕点D顺时针旋转30°,
    ∴,


    ∴AD=2DH,AH=DH=,

    由(2)可知:,

    ∵AD⊥BC,CD=,
    ∴DG=1,CG=2DG=2,
    ∴CG=FG=2,

    ∴AG=2GF=4,
    ∴AD=AG+DG=4+1=5,
    ∴.
    【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,旋转的性质,相似三角形的判定和性质等知识,证明三角形相似是解题的关键.
    8.(2022·辽宁丹东·中考真题)已知矩形ABCD,点E为直线BD上的一个动点(点E不与点B重合),连接AE,以AE为一边构造矩形AEFG(A,E,F,G按逆时针方向排列),连接DG.
    (1)如图1,当==1时,请直接写出线段BE与线段DG的数量关系与位置关系;
    (2)如图2,当==2时,请猜想线段BE与线段DG的数量关系与位置关系,并说明理由;
    (3)如图3,在(2)的条件下,连接BG,EG,分别取线段BG,EG的中点M,N,连接MN,MD,ND,若AB=,∠AEB=45°,请直接写出△MND的面积.
    【答案】(1)BE=DG,BE⊥DG
    (2)BE=,BE⊥DG,理由见解析
    (3)S△MNG=
    【分析】(1)证明△BAE≌△DAG,进一步得出结论;
    (2)证明BAE∽△DAG,进一步得出结论;
    (3)解斜三角形ABE,求得BE=3,根据(2)可得DG=6,从而得出三角形BEG的面积,可证得△MND≌△MNG,△MNG与△BEG的面积比等于1:4,进而求得结果.
    (1)
    解:由题意得:四边形ABCD和四边形AEFG是正方形,
    ∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
    ∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,
    ∴∠BAE=∠DAG,
    ∴△BAE≌△DAG(SAS),
    ∴BE=DG,∠ABE=∠ADG,
    ∴∠ADG+∠ADB=∠ABE+∠ADB=90°,
    ∴∠BDG=90°,
    ∴BE⊥DG;
    (2)
    BE=,BE⊥DG,理由如下:
    由(1)得:∠BAE=∠DAG,
    ∵==2,
    ∴△BAE∽△DAG,
    ∴,∠ABE=∠ADG,
    ∴∠ADG+∠ADB=∠ABE+∠ADB=90°,
    ∴∠BDG=90°,
    ∴BE⊥DG;
    (3)
    如图,
    作AH⊥BD于H,
    ∵tan∠ABD=,
    ∴设AH=2x,BH=x,
    在Rt△ABH中,
    x2+(2x)2=()2,
    ∴BH=1,AH=2,
    在Rt△AEH中,
    ∵tan∠ABE=,
    ∴,
    ∴EH=AH=2,
    ∴BE=BH+EH=3,
    ∵BD==5,
    ∴DE=BD﹣BE=5﹣3=2,
    由(2)得:,DG⊥BE,
    ∴DG=2BE=6,
    ∴S△BEG===9,
    在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,
    ∴DM=GM=,
    ∵NM=NM,
    ∴△DMN≌△GMN(SSS),
    ∵MN是△BEG的中位线,
    ∴MNBE,
    ∴△BEG∽△MNG,
    ∴=()2=,
    ∴S△MNG=S△MNG=S△BEG=.
    【点睛】本题主要考查了正方形,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是类比的方法.
    9.(2022·山东济南·中考真题)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
    (1)判断线段BD与CE的数量关系并给出证明;
    (2)延长ED交直线BC于点F.
    ①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;
    ②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.
    【答案】(1),理由见解析
    (2)①;②,理由见解析
    【分析】(1)利用等边三角形的性质和旋转的性质易得到,再由全等三角形的性质求解;
    (2)①根据线段绕点A按逆时针方向旋转得到得到是等边三角形,
    由等边三角形的性质和(1)的结论来求解;②过点A作于点G,连接AF,根据等边三角形的性质和锐角三角函数求值得到,,进而得到,进而求出,结合,ED=EC得到,再用等腰直角三角形的性质求解.
    (1)
    解:.
    证明:∵是等边三角形,
    ∴,.
    ∵线段绕点A按逆时针方向旋转得到,
    ∴,,
    ∴,
    ∴,
    即.
    在和中

    ∴,
    ∴;
    (2)
    解:①
    理由:∵线段绕点A按逆时针方向旋转得到,
    ∴是等边三角形,
    ∴,
    由(1)得,
    ∴;
    ②过点A作于点G,连接AF,如下图.
    ∵是等边三角形,,
    ∴,
    ∴.
    ∵是等边三角形,点F为线段BC中点,
    ∴,,,
    ∴,
    ∴,,
    ∴,
    即,
    ∴,
    ∴.
    ∵,,
    ∴,
    即是等腰直角三角形,
    ∴.
    【点睛】本题主要考查了等边三角形的性质,旋转的性质,全等三角形的判定和性质,解直角三角形,相似三角形的判定和性质,等腰直角三角形的判定和性质,理解相关知识是解答关键.
    10.(2022·湖南益阳·中考真题)如图,矩形ABCD中,AB=15,BC=9,E是CD边上一点(不与点C重合),作AF⊥BE于F,CG⊥BE于G,延长CG至点C′,使C′G=CG,连接CF,AC′.
    (1)直接写出图中与△AFB相似的一个三角形;
    (2)若四边形AFCC′是平行四边形,求CE的长;
    (3)当CE的长为多少时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形?
    【答案】(1)答案不唯一,如△AFB∽△BCE
    (2)CE=7.5
    (3)当CE的长为长为或3时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形
    【分析】(1)因为△AFB是直角三角形,所以和它相似的三角形都是直角三角形,有三个直角三角形和△AFB相似,解答时任意写出一个即可;
    (2)根据△AFB∽△BGC,得,即,设AF=5x,BG=3x,根据△AFB∽△BCE∽△BGC,列比例式可得CE的长;
    (3)分两种情况:①当C'F=BC'时,如图2,②当C'F=BF时,如图3,根据三角形相似列比例式可得结论.
    (1)解:(任意回答一个即可);①如图1,△AFB∽△BCE,理由如下:∵四边形ABCD是矩形,∴DC∥AB,∠BCE=∠ABC=90°,∴∠BEC=∠ABF,∵AF⊥BE,∴∠AFB=90°,∴∠AFB=∠BCE=90°,∴△AFB∽△BCE;②△AFB∽△CGE,理由如下:∵CG⊥BE,∴∠CGE=90°,∴∠CGE=∠AFB,∵∠CEG=∠ABF,∴△AFB∽△CGE;③△AFB∽△BGC,理由如下:∵∠ABF+∠CBG=∠CBG+∠BCG=90°,∴∠ABF=∠BCG,∵∠AFB=∠CGB=90°,∴△AFB∽△BGC;
    (2)∵四边形AFCC'是平行四边形,∴AF=CC',由(1)知:△AFB∽△BGC,∴ ,即,设AF=5x,BG=3x,∴CC'=AF=5x,∵CG=C'G,∴CG=C'G=2.5x,∵△AFB∽△BCE∽△BGC,∴ ,即,∴CE=7.5;
    (3)分两种情况:①当C'F=BC'时,如图2,∵C'G⊥BE,∴BG=GF,∵CG=C'G,∴四边形BCFC'是菱形,∴CF=CB=9,由(2)知:设AF=5x,BG=3x,∴BF=6x,∵△AFB∽△BCE,∴ ,即,∴,∴CE=;②当C'F=BF时,如图3,由(1)知:△AFB∽△BGC,∴ ,设BF=5a,CG=3a,∴C'F=5a,∵CG=C'G,BE⊥CC',∴CF=C'F=5a,∴FG==4a,∵tan∠CBE=,∴,∴CE=3;综上,当CE的长为长为或3时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形.
    【点睛】本题是四边形综合题,考查了矩形的判定和性质,菱形的判定和性质,相似三角形的判定和性质,平行线的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.
    11.(2022·四川绵阳·中考真题)如图,平行四边形ABCD中,DB=,AB=4,AD=2,动点E,F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
    (1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
    (2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,ΔAEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
    (3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM.并说明理由.
    【答案】(1);
    (2)y关于x的函数解析式为;当时,y的最大值为;
    (3)当EF∥BD时,能使EM=HM.理由见解析
    【分析】(1)延长DF交CB的延长线于点G,先证得,可得,根据题意可得AF=,AE=,可得到CG=3,再证明△PDE∽△PGC,即可求解;
    (2)分三种情况讨论:当0≤x≤2时,E点在AD上,F点在AB上;当时,E点在BD上,F点在AB上;当时,点E、F均在BD上,即可求解;
    (3)当EF∥BD时,能使EM=HM.理由:连接DH,根据直角三角形的性质,即可求解 .
    (1)
    解:如图,延长DF交CB的延长线于点G,
    ∵四边形ABCD是平行四边形,
    ∴,
    ∴,
    ∴,
    ∵点E的速度为1个单位每秒,点F的速度为4个单位每秒,运动时间为秒,
    ∴AF=,AE=,
    ∵AB=4,AD=2,
    ∴BF=, ED=,
    ∴,
    ∴BG=1,
    ∴CG=3,
    ∵,
    ∴△PDE∽△PGC,
    ∴,
    ∴;
    (2)
    解:根据题意得:当0≤x≤2时,E点在AD上,F点在AB上,此时AE=x,,
    ∵, AB=4,AD=2,
    ∴,
    ∴△ABD是直角三角形,
    ∵,
    ∴∠ABD=30°,
    ∴∠A=60°,
    如图,过点E作交于H,
    ∴,
    ∴;
    ∴当x>0时,y随x的增大而增大,
    此时当x=2时,y有最大值3;
    当时,E点在BD上,F点在AB上,
    如图, 过点E作交于N,过点D作交于M,则EN∥DM,
    根据题意得:DE=x-2,
    ∴,
    在Rt△ABD中,,AM=1,
    ∵EN∥DM,
    ∴△BEN∽△BDM,
    ∴,

    ∴,
    ∴,
    此时该函数图象的对称轴为直线 ,
    ∴当时,y随x的增大而增大,
    此时当时,y有最大值;
    当时,点E、F均在BD上,
    过点E作交于Q,过点F作交于P,过点D作DM⊥AB于点M,
    ∴,DA+DE=x,
    ∵AB=4,AD=2,
    ∴,,
    ∵PF∥DM,
    ∴△BFP∽△BDM,
    ∴,即,
    ∴,
    ∵,
    ∴△BEQ∽△BDM,
    ∴,即,
    ∴,
    ∴,
    此时y随x的增大而减小,
    此时当时,y有最大值;
    综上所述:y关于x的函数解析式为
    当时,y最大值为;
    (3)
    解:当EF∥BD时,能使EM=HM.理由如下:
    连接DH,如图,
    ∵,AB=4,
    ∴.AH=1,
    由(2)得:此时,
    ∵M是DF的中点,
    ∴HM=DM=MF,
    ∵EF∥BD,BD⊥AD,
    ∴EF⊥AD,
    ∴EM=DM=FM,
    ∴EM=HM.
    【点睛】本题是四边形的综合题,熟练掌握平行四边形的性质,平行线的性质,直角三角形的性质,分类讨论,数形结合是解题的关键.
    12.(2022·山东济宁·中考真题)如图,△AOB是等边三角形,过点A作y轴的垂线,垂足为C,点C的坐标为(0,).P是直线AB上在第一象限内的一动点,过点P作y轴的垂线,垂足为D,交AO于点E,连接AD,作DM⊥AD交x轴于点M,交AO于点F,连接BE,BF.
    (1)填空:若△AOD是等腰三角形,则点D的坐标为 ;
    (2)当点P在线段AB上运动时(点P不与点A,B重合),设点M的横坐标为m.
    ①求m值最大时点D的坐标;
    ②是否存在这样的m值,使BE=BF?若存在,求出此时的m值;若不存在,请说明理由.
    【答案】(1)或
    (2)①点D坐标为;②存在,
    【分析】(1)根据题意易得∠AOB=60°从而∠AOC=30°和∠CDA=60°,根据tan30°求得AC的长,再根据sin60°求得AD的长,当OA=AD和OD=OA时分情况讨论,即可得到OD的长,从而得到D点坐标;
    (2)①设点D的坐标为(0,a),则OD=a,CD=-a,易证,从而得出,代入即可得到m与a的函数关系,化为顶点式即可得出答案;
    ②作FH⊥y轴于点H,得到AC∥PD∥FH∥x轴,易得,,易证得出,即,设,则,通过证得得出,代入即可得到n的值,进一步得到m的值.
    (1)
    ∵△AOB是等边三角形,
    ∴∠AOB=60°,∴∠AOC=30°,
    ∵AC⊥y轴,点C的坐标为(0,),
    ∴OC=,
    ∴,
    当△AOD是等腰三角形,OD=AD,∠DAO=∠DOA=30°,
    ∴∠CDA=60°,
    ∴,
    ∴,
    ∴D的坐标为,
    当△AOD是等腰三角形,此时OA=OD时,,
    ∴OD=OA=2,
    ∴点D坐标为(0,2),
    故答案为:或(0,2);
    (2)
    ①解:设点D的坐标为(0,a),则OD=a,CD=-a,
    ∵△AOB是等边三角形,
    ∴,
    ∴,
    在RtΔAOC中,,
    ∴,
    ∴,
    ∵,∴,
    ∵,∴,
    ∵,
    ∴,
    ∴,即:,
    ∴,
    ∴当时,m的最大值为;
    ∴m的最大值为时,点D坐标为;
    ②存在这样的m值,使BE=BF;
    作FH⊥y轴于点H,
    ∴AC∥PD∥FH∥x轴,
    ∴,,


    ,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    设,则,

    ∵,,
    ∴,
    ∴,
    ∴,
    解得: 或 ,
    当时,点P与点A重合,不合题意,舍去,
    当时, ,
    存在这样的m值,使BE=BF.此时 .
    【点睛】本题考查了等边三角形的性质、特殊角的三角函数,全等三角形的判定和性质、相似三角形的判定和性质以及二次函数的综合运用,解题的关键是得出二次函数的关系式,是对知识的综合考查.
    13.(2022·山东烟台·中考真题)
    (1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
    (2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.
    (3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.
    ①求的值;
    ②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
    【答案】(1)见解析
    (2)
    (3)①;②
    【分析】(1)证明△BAD≌△CAE,从而得出结论;
    (2)证明△BAD∽△CAE,进而得出结果;
    (3)①先证明△ABC∽△ADE,再证得△CAE∽△BAD,进而得出结果;
    ②在①的基础上得出∠ACE=∠ABD,进而∠BFC=∠BAC,进一步得出结果.
    【详解】(1)证明:∵△ABC和△ADE都是等边三角形,
    ∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
    ∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE(SAS),
    ∴BD=CE;
    (2)解:∵△ABC和△ADE都是等腰直角三角形,
    ,∠DAE=∠BAC=45°,
    ∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
    ∴∠BAD=∠CAE,
    ∴△BAD∽△CAE,

    (3)解:①,∠ABC=∠ADE=90°,
    ∴△ABC∽△ADE,
    ∴∠BAC=∠DAE,,
    ∴∠CAE=∠BAD,
    ∴△CAE∽△BAD,

    ②由①得:△CAE∽△BAD,
    ∴∠ACE=∠ABD,
    ∵∠AGC=∠BGF,
    ∴∠BFC=∠BAC,
    ∴sin∠BFC.
    【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型及其变形.
    14.(2022·吉林长春·中考真题)如图,在中,,,点M为边的中点,动点P从点A出发,沿折线以每秒个单位长度的速度向终点B运动,连结.作点A关于直线的对称点,连结、.设点P的运动时间为t秒.
    (1)点D到边的距离为__________;
    (2)用含t的代数式表示线段的长;
    (3)连结,当线段最短时,求的面积;
    (4)当M、、C三点共线时,直接写出t的值.
    【答案】(1)3
    (2)当0≤t≤1时,;当1<t≤2时,;
    (3)
    (4)或
    【分析】(1)连接DM,根据等腰三角形的性质可得DM⊥AB,再由勾股定理,即可求解;
    (2)分两种情况讨论:当0≤t≤1时,点P在AD边上;当1<t≤2时,点P在BD边上,即可求解;
    (3)过点P作PE⊥DM于点E,根据题意可得点A的运动轨迹为以点M为圆心,AM长为半径的圆,可得到当点D、A′、M三点共线时,线段最短,此时点P在AD上,再证明△PDE∽△ADM,可得,从而得到,在中,由勾股定理可得,即可求解;
    (4)分两种情况讨论:当点位于M、C之间时,此时点P在AD上;当点()位于C M的延长线上时,此时点P在BD上,即可求解.
    (1)
    解:如图,连接DM,
    ∵AB=4,,点M为边的中点,
    ∴AM=BM=2,DM⊥AB,
    ∴,
    即点D到边的距离为3;
    故答案为:3
    (2)
    解:根据题意得:当0≤t≤1时,点P在AD边上,

    当1<t≤2时,点P在BD边上,;
    综上所述,当0≤t≤1时,;当1<t≤2时,;
    (3)
    解:如图,过点P作PE⊥DM于点E,
    ∵作点A关于直线的对称点,
    ∴A′M=AM=2,
    ∴点A的运动轨迹为以点M为圆心,AM长为半径的圆,
    ∴当点D、A′、M三点共线时,线段最短,此时点P在AD上,
    ∴,
    根据题意得:,,
    由(1)得:DM⊥AB,
    ∵PE⊥DM,
    ∴PE∥AB,
    ∴△PDE∽△ADM,
    ∴,
    ∴,
    解得:,
    ∴,
    在中,,
    ∴,解得:,
    ∴,
    ∴;
    (4)
    解:如图,
    当点M、、C三点共线时,且点位于M、C之间时,此时点P在AD上,
    连接A A′, A′B,过点P作PF⊥AB于点F,过点A′作A′G⊥AB于点G,则A A′⊥PM,
    ∵AB为直径,
    ∴∠A =90°,即A A′⊥A′B,
    ∴PM∥A′B,
    ∴∠PMF=∠AB A′,
    过点C作CN⊥AB交AB延长线于点N,
    在中,AB∥DC,
    ∵DM⊥AB,
    ∴DM∥CN,
    ∴四边形CDMN为平行四边形,
    ∴CN=DM=3,MN=CD=4,
    ∴CM=5,
    ∴,
    ∵ M=2,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,即PF=3FM,
    ∵,,
    ∴,
    ∴,即AF=2FM,
    ∵AM=2,
    ∴,
    ∴,解得:;
    如图,当点()位于C M的延长线上时,此时点P在BD上,,
    过点作于点G′,则,取的中点H,则点M、P、H三点共线,过点H作HK⊥AB 于点K,过点P作PT⊥AB于点T,
    同理:,
    ∵HK⊥AB,,
    ∴HK∥A′′G′,
    ∴,
    ∵点H是的中点,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,即MT=3PT,
    ∵,,
    ∴,
    ∴,
    ∵MT+BT=BM=2,
    ∴,
    ∴,解得:;
    综上所述,t的值为或.
    【点睛】本题主要考查了四边形的综合题,熟练掌握平行四边形的性质,圆的基本性质,相似三角形的判定和性质,解直角三角形,根据题意得到点的运动轨迹是解题的关键,是中考的压轴题.
    15.(2022·内蒙古通辽·中考真题)已知点在正方形的对角线上,正方形与正方形有公共点.
    (1)如图1,当点在上,在上,求的值为多少;
    (2)将正方形绕点逆时针方向旋转,如图2,求:的值为多少;
    (3),,将正方形绕逆时针方向旋转,当,,三点共线时,请直接写出的长度.
    【答案】(1)2
    (2)
    (3)或
    【分析】(1)根据题意可得,根据平行线分线段成比例即可求解;
    (2)根据(1)的结论,可得,根据旋转的性质可得,进而证明,根据相似三角形的性质即可求解;
    (3)分两种情况画出图形,证明△ADG∽△ACE,根据相似三角形的判定和性质以及勾股定理即可得出答案.
    (1)
    解:正方形与正方形有公共点,点在上,在上,
    四边形是正方形


    (2)
    解:如图,连接,
    正方形绕点逆时针方向旋转,

    (3)
    解:①如图,
    ,,
    ,,,
    三点共线,
    中,,

    由(2)可知,


    ②如图:
    由(2)知△ADG∽△ACE,
    ∴,
    ∴DG=CE,
    ∵四边形ABCD是正方形,
    ∴AD=BC=8,AC=,
    ∵AG=AD,
    ∴AG=AD=8,
    ∵四边形AFEG是正方形,
    ∴∠AGE=90°,GE=AG=8,
    ∵C,G,E三点共线.
    ∴∠AGC=90°
    ∴CG=,
    ∴CE=CG+EG=8+8,
    ∴DG=CE=.
    综上,当C,G,E三点共线时,DG的长度为或.
    【点睛】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.
    16.(2022·湖南郴州·中考真题)如图1,在矩形ABCD中,,.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作,交AB于点F.
    (1)求证:;
    (2)如图2,连接CF,过点B作,垂足为G,连接AG.点M是线段BC的中点,连接GM.
    ①求的最小值;
    ②当取最小值时,求线段DE的长.
    【答案】(1)见解析
    (2)①5;②或
    【分析】(1)证明出即可求解;
    (2)①连接AM.先证明.确定出点G在以点M为圆心,3为半径的圆上.当A,G,M三点共线时,.此时,取最小值.在中利用勾股定理即可求出AM,则问题得解.②先求出AF,求AF的第一种方法:过点M作交FC于点N,即有,进而有.设,则,.再根据,得到,得到,则有,解方程即可求出AF;求AF的第二种方法:过点G作交BC于点H.即有.则有,根据,可得,进而求出,.由得,即可求出AF.求出AF之后,由(1)的结论可得.设,则,即有,解得解方程即可求出DE.
    (1)
    证明:如图1,
    ∵四边形ABCD是矩形,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴;
    (2)
    ①解:如图2-1,连接AM.
    ∵,
    ∴是直角二角形.
    ∴.
    ∴点G在以点M为圆心,3为半径的圆上.
    当A,G,M三点不共线时,由三角形两边之和大于箒三边得:,
    当A,G,M三点共线时,.
    此时,取最小值.在中,.
    ∴的最小值为5.
    ②(求AF的方法一)如图2-2,过点M作交FC于点N,
    ∴.
    ∴.
    设,则,
    ∴.
    ∵,
    ∴,
    ∴,
    由①知的最小值为5、即,
    又∵,
    ∴.
    ∴,解得,即.
    (求AF的方法二)
    如图2-3,过点G作交BC于点H.
    ∴.
    ∴,
    由①知的最小值为5,即,
    又∵,
    ∴.
    ∴,.
    由得,
    ∴,即,
    解得.
    ∴.
    由(1)的结论可得.
    设,则,
    ∴,
    解得或.
    ∵,,
    ∴或.
    【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.
    17.(2022·广西贵港·中考真题)已知:点C,D均在直线l的上方,与都是直线l的垂线段,且在的右侧,,与相交于点O.
    (1)如图1,若连接,则的形状为______,的值为______;
    (2)若将沿直线l平移,并以为一边在直线l的上方作等边.
    ①如图2,当与重合时,连接,若,求的长;
    ②如图3,当时,连接并延长交直线l于点F,连接.求证:.
    【答案】(1)等腰三角形,
    (2)①;②见解析
    【分析】(1)过点C作CH⊥BD于H,可得四边形ABHC是矩形,即可求得AC=BH,进而可判断△BCD的形状,AC、BD都垂直于l,可得△AOC∽△BOD,根据三角形相似的性质即可求解.
    (2)①过点E作于点H,AC,BD均是直线l的垂线段,可得,根据等边三角形的性质可得,再利用勾股定理即可求解.
    ②连接,根据,得,即是等边三角形,把旋转得,根据30°角所对的直角边等于斜边的一般得到,则可得,根据三角形相似的性质即可求证结论.
    (1)
    解:过点C作CH⊥BD于H,如图所示:
    ∵AC⊥l,DB⊥l,CH⊥BD,
    ∴∠CAB=∠ABD=∠CHB=90°,
    ∴四边形ABHC是矩形,
    ∴AC=BH,
    又∵BD=2AC,
    ∴AC=BH=DH,且CH⊥BD,
    ∴的形状为等腰三角形,
    ∵AC、BD都垂直于l,
    ∴,
    ∴△AOC∽△BOD,
    ,即,

    故答案为:等腰三角形,.
    (2)
    ①过点E作于点H,如图所示:
    ∵AC,BD均是直线l的垂线段,
    ∴,
    ∵是等边三角形,且与重合,
    ∴∠EAD=60°,
    ∴,
    ∴,
    ∴在中,,,
    又∵,,
    ∴,
    ∴,AE=6
    在中,,
    又由(1)知,
    ∴,则,
    ∴在中,由勾股定理得:.
    ②连接,如图3所示:
    ∵,
    ∴,
    ∵由(1)知是等腰三角形,
    ∴是等边三角形,
    又∵是等边三角形,
    ∴绕点D顺时针旋转后与重合,
    ∴,
    又∵,
    ∴,
    ∴,
    ∴,
    又,
    ∴,
    ∴,
    ∴.
    【点睛】本题考查了矩形的判定及性质、三角形相似的判定及性质、等边三角形的判定及性质、勾股定理的应用,熟练掌握三角形相似的判定及性质和勾股定理的应用,巧妙借助辅助线是解题的关键.
    18.(2022·山东青岛·中考真题)如图,在中,,将绕点A按逆时针方向旋转得到,连接.点P从点B出发,沿方向匀速运动,速度为;同时,点Q从点A出发,沿方向匀速运动,速度为.交于点F,连接.设运动时间为.解答下列问题:
    (1)当时,求t的值;
    (2)设四边形的面积为,求S与t之间的函数关系式;
    (3)是否存在某一时刻t,使?若存在,求出t的值;若不存在,请说明理由.
    【答案】(1)
    (2)
    (3)存在,
    【分析】(1)利用得,即,进而求解;
    (2)分别过点C,P作,垂足分别为M,N,证得,,求得,再证得,得出,根据即可求出表达式;
    (3)当时,易证,得出,则,进而求出t值.
    (1)
    解:在中,由勾股定理得,
    ∵绕点A按逆时针方向旋转得到








    答:当时,t的值为.
    (2)
    解:分别过点C,P作,垂足分别为M,N















    (3)
    解:假设存在某一时刻t,使









    ∴存在时刻,使.
    【点睛】本题考查了旋转与相似,利用勾股定理求线段长,平行线的性质,根据旋转的性质,找到相似图形是解决问题的关键,是中考中的常考题.
    19.(2022·辽宁营口·中考真题)在平面直角坐标系中,抛物线经过点和点,与y轴交于点C,点P为抛物线上一动点.
    (1)求抛物线和直线的解析式;
    (2)如图,点P为第一象限内抛物线上的点,过点P作,垂足为D,作轴,垂足为E,交于点F,设的面积为,的面积为,当时,求点P坐标;
    (3)点N为抛物线对称轴上的动点,是否存在点N,使得直线垂直平分线段?若存在,请直接写出点N坐标,若不存在,请说明理由.
    【答案】(1)抛物线解析式为,直线的解析式为,
    (2)
    (3)存在
    【分析】(1)待定系数法求解析式即可求解;
    (2)设,则,中,,证明,根据相似三角形的性质以及建立方程,解方程即可求解;
    (3)设直线交轴于点,设交于点,连接,,,证明是等腰直角三角形,则设,则,,根据列出方程,即可求解.
    (1)
    解:抛物线经过点和点,

    解得,
    抛物线解析式为,
    设直线的解析式为,

    解得,
    直线的解析式为,
    (2)
    如图,设直线与轴交于点,
    由,令,得,则,


    设,则,






    中,,
    设的面积为,的面积为,



    即,
    设,则,

    解得或(舍),
    当时, ,
    (3)
    设直线交轴于点,设交于点,连接,,,如图,
    由,令,得,则
    设过直线的解析式为,
    解得
    过直线的解析式为,
    是等腰直角三角形
    是等腰直角三角形

    直线垂直平分线段
    是等腰直角三角形,

    设,则,

    解得(舍)

    【点睛】本题考查了二次函数综合,解直角三角形,相似三角形的性质与判定,二次函数线段问题,掌握以上知识是解题的关键.
    20.(2022·山东威海·中考真题)回顾:用数学的思维思考
    (1)如图1,在△ABC中,AB=AC.
    ①BD,CE是△ABC的角平分线.求证:BD=CE.
    ②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.
    (从①②两题中选择一题加以证明)
    (2)猜想:用数学的眼光观察
    经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:
    如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.
    (3)探究:用数学的语言表达
    如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.
    【答案】(1)见解析
    (2)添加条件CD=BE,见解析
    (3)能,0<CF<
    【分析】(1)①利用ASA证明△ABD≌△ACE.
    ②利用SAS证明△ABD≌△ACE.
    (2)添加条件CD=BE,证明AC+CD=AB+BE,从而利用SAS证明△ABD≌△ACE.
    (3)在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,当BD=BF=BA时,可证△CBF∽△BAF,运用相似性质,求得CF的长即可.
    (1)
    ①如图1,∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵BD,CE是△ABC的角平分线,
    ∴∠ABD=∠ABC,∠ACE =∠ACB,
    ∴∠ABD=∠ACE,
    ∵AB=AC,∠A=∠A,
    ∴△ABD≌△ACE,
    ∴BD=CE.
    ②如图1,∵AB=AC,点D,E分别是边AC,AB的中点,
    ∴AE=AD,
    ∵AB=AC,∠A=∠A,
    ∴△ABD≌△ACE,
    ∴BD=CE.
    (2)
    添加条件CD=BE,证明如下:
    ∵AB=AC,CD=BE,
    ∴AC+CD=AB+BE,
    ∴AD=AE,
    ∵AB=AC,∠A=∠A,
    ∴△ABD≌△ACE,
    ∴BD=CE.
    (3)

    在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,
    当BD=BF=BA时,E与A重合,
    ∵∠A=36°,AB=AC,
    ∴∠ABC=∠ACB=72°,∠A=∠BFA=36°,
    ∴∠ABF=∠BCF=108°,∠BFC=∠AFB,
    ∴△CBF∽△BAF,
    ∴,
    ∵AB=AC=2=BF, 设CF=x,
    ∴,
    整理,得,
    解得x=,x=(舍去),
    故CF= x=,
    ∴0<CF<.
    【点睛】本题考查了等腰三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,一元二次方程的解法,熟练掌握等腰三角形的性质,三角形全等的判定,三角形相似的判定性质是解题的关键.

    相关试卷

    中考数学二轮复习压轴题培优训练专题24以三角形为载体的几何综合问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习压轴题培优训练专题24以三角形为载体的几何综合问题(2份,原卷版+解析版),文件包含中考数学二轮复习压轴题培优训练专题24以三角形为载体的几何综合问题原卷版doc、中考数学二轮复习压轴题培优训练专题24以三角形为载体的几何综合问题解析版doc等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。

    专题27以相似为载体的几何综合问题(教师版)-拔尖2023中考数学压轴题突破(全国通用):

    这是一份专题27以相似为载体的几何综合问题(教师版)-拔尖2023中考数学压轴题突破(全国通用),共70页。试卷主要包含了,连接DG等内容,欢迎下载使用。

    专题27以相似为载体的几何综合问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用):

    这是一份专题27以相似为载体的几何综合问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用),共12页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map