山东省枣庄市台儿庄区2024-2025学年九年级上学期10月月考数学试题(原卷版)-A4
展开
这是一份山东省枣庄市台儿庄区2024-2025学年九年级上学期10月月考数学试题(原卷版)-A4,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共36分.
1. 用配方法解方程时,配方后正确的是( )
A. B. C. D.
2. 已知是关于的一元二次方程的一个实数根,则实数的值是( )
A 0B. 1C. −3D. −1
3. 如图,在矩形中,对角线,相交于点O,,,则的长为( )
A. 6B. 5C. 4D. 3
4. 如图,四边形是菱形,,,于点,则的长是( )
A. B. C. D.
5. 如图,在平行四边形中,,.连接AC,过点B作,交DC的延长线于点E,连接AE,交BC于点F.若,则四边形ABEC的面积为( )
A. B. C. 6D.
6. 在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是( )
A. B. =10
C. D. =10
7. 两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为,根据题意,下列方程正确的是( )
A. B.
C. D.
8. 关于的方程有实数根,则的取值范围是( )
A. 且B. 且C. D.
9. 如图,在长为,宽为矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是,则小路的宽是( )
A. B. C. 或D.
10. 如图,折叠矩形纸片,使点落在点处,折痕为,已知,,则的长是( )
A. B. C. D.
11. 如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A. 1B. C. 2D.
12. 在平面直角坐标系中,若直线不经过第一象限,则关于方程的实数根的个数为( )
A. 0个B. 1个C. 2个D. 1或2个
二、填空题:本题共6小题,每小题填对得4分,共24分,只要求填最后结果.
13. 已知是一元二次方程的两个根,则__________.
14. 已知a、b是方程的两根,则___________.
15. 若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.
16. 如图,在平面直角坐标系中,菱形对角线交点坐标是,点的坐标是,且,则点的坐标是___________.
17. 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为________.
18. 如图,正方形的边长为8,M在上,且,N是上一动点,则的最小值为______
三、解答题(本大题共6小题,满分60分.)
19. 解方程
(1)(配方法)
(2)(公式法)
(3)(配方法)
(4)
20. 如图,在菱形中,E,F是对角线上的两点,且.
(1)求证:;
(2)求证:四边形是菱形.
21. 如图,点C是的中点,四边形是平行四边形.
(1)求证:四边形平行四边形;
(2)如果,求证:四边形是矩形.
22. 某口罩生产厂生产的口罩1月份平均日产量为20000,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.
(1)求口罩日产量的月平均增长率;
(2)按照这个增长率,预计4月份平均日产量为多少?
23. 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为________件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
24. 已知关于x的方程有两实数根.
(1)求k的取值范围;
相关试卷
这是一份山东省枣庄市台儿庄区2024——2025学年九年级上学期数学月考试卷(解析版)-A4,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省枣庄市台儿庄区2024-2025学年九年级上学期10月月考数学试题(解析版)-A4,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省枣庄市台儿庄区九年级(上)10月月考数学试卷(解析版),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。