2021-2022学年江苏南京鼓楼区五年级下册数学期末试卷及答案
展开
这是一份2021-2022学年江苏南京鼓楼区五年级下册数学期末试卷及答案,共20页。试卷主要包含了填空题,选择,计算题,看图计算,操作题,解决实际问题等内容,欢迎下载使用。
一、填空题。(每空1分,共28分)
1. 在( )里填上最简分数。
80平方分米=( )平方米 240公顷=( )平方千米
【答案】 ①. ②.
【解析】
【分析】1平方米=100平方分米;1平方千米=100公顷,高级单位换算成低级单位,乘进率;低级单位换算成高级单位,除以进率;最简分数的意义:分子分母是互质数的分数叫做最简分数,据此解答。
【详解】80平方分米=平方米
240公顷=平方千米
【点睛】解答本题的关键是熟记进率;以及最简分数的意义。
2. 一根绳子长36米,把它平均剪成6段,每段是这根绳子总长度的,每段绳长( )米。
【答案】;6
【解析】
【分析】把这根绳子的长度看作单位“1”,把它平均分成6份,每份占这根绳子的;求每段长,根据平均分的意义,用36÷6即可。据此解答。
【详解】1÷6=
36÷6=6(米)
【点睛】解决此题关键是弄清求的是“分率”还是“具体的数量”,求分率:平均分的是单位“1”;求具体的数量:平均分的是具体的数量,要注意:分率不能带单位名称,而具体的数量要带单位名称。
3. ( )(保留两位小数)。
【答案】18;10;10;0.83
【解析】
【分析】根据分数的基本性质:分数的分子分母同时乘或除以一个相同的数(0除外),分数的大小不变。==,再根据分数与除法的关系:分子做被除数,分母做除数,=15÷18;用分母6+12的和再除以6,求出分母扩大几倍,求出分子扩大几倍,进而求出分子加多少;再用分子除以分母,保留两位小数,看小数点后面的千分位,再根据“四舍五入”法进行解答。
【详解】(6+12)÷6
=18÷6
=3
5×3-5
=15-5
=10
15÷18===≈0.83
【点睛】根据分数的基本性质、分数与除法的关系、以及“四舍五入”法进行解答。
4. 在、、和中,真分数有( ),假分数有( ),最简分数有( )。
【答案】 ①. 、、 ②. ③. 、、
【解析】
【分析】分子比分母小的分数叫做真分数;分子大于或等于分母的分数叫做假分数;分子分母是互质数的分数叫做最简分数,据此解答。
【详解】在、、和中;
真分数有:、、
假分数有:
最简分数有:、、
【点睛】利用真分数、假分数和最简分数的意义进行解答。
5. 在( )里填上“>”“<”或“=”。
( ) ( ) ( ) ( )
【答案】 ①. > ②. < ③. < ④. <
【解析】
【分析】先通分,化分母相同的分数,再根据同分母分数比较大小的方法比较大小,第一,四小题据此解答;
把整数化成分母是6的假分数,再进行比较大小,第二小题据此解答;
先把分数和1比较大小,再进行比较大小,第四小题据此解答。
【详解】和
=;=
因为>,所以>
和3
3=
因为<,所以<3
和
因为<1,>1,所以<
和
=
因为<,所以<
【点睛】利用异分母分数比较大小的方法、同分母分数比较大小的方法以及整数与假分数的互化的知识进行解答。
6. 在35、18、45、28、60这5个数中,偶数有( ),5的倍数有( ),( )既有因数3,又有因数5。
【答案】 ①. 18、28、60 ②. 35、45、60 ③. 45、60
【解析】
【分析】根据偶数的意义:是2的倍数的数叫做偶数;根据5的倍数特征:一个数的个位如果是0或5,则这个数就是5的倍数;3的倍数特征:各位上的数的和是3的倍数,这个数一定是3的倍数,既有因数3又有因数5,个位上是5或0,各个数位上的和能被3整除;据此解答。
【详解】35、18、45、28、60这5个数中,
偶数有:18、28、60
5的倍数有:35、45、60
既有因数3,又有因数5:45、60
【点睛】利用偶数的意义、5的倍数特征、3的倍数特征进行解答。
7. 如果a、b是两个不为0的连续自然数,它们的最小公倍数是( )。
【答案】ab
【解析】
【分析】因为a、b是相邻的两个自然数,且(a.、b均不为0),即a和b互质,当两个数为互质数时,它们的最大公因数是1,最小公倍数是这两个数的乘积。据此解答。
【详解】因为a、b是相邻的两个自然数,且a、b均不为0,即a和b互质,则:a和b的最小公倍数是ab。
【点睛】此题主要考查求两个数为互质关系时最小公倍数是这两个数的乘积。
8. 在一个边长为40厘米的正方形中画一个最大的圆,这个圆的半径是( )厘米,面积( )平方厘米。
【答案】 ①. 20 ②. 1256
【解析】
【分析】在正方形内画最大的圆,圆的直径等于正方形边长,进而求出圆的半径,再根据圆的面积公式:π×半径2,代入数据,即可解答。
【详解】40÷2=20(厘米)
3.14×202
=3.14×400
=1256(平方厘米)
【点睛】解答本题的关键明确正方形内画最大的圆,圆的直径等于正方形的边长,以及圆的面积公式的应用。
9. 用数字卡片2、3和5组成两位数中,2的倍数有( ),它们的最大公因数是( )。
【答案】 ①. 32、52 ②. 4
【解析】
【分析】根据2的倍数特征:一个数的个位如果是0,2,4,6,8,则这个数就是2的倍数;求出2、3和5组成的两位数,进而求出2的倍数的数;再根据求最大公因数的方法:两个数的公有质因数的连乘积就是这两个数的最大公因数;据此解答。
【详解】2,3和5组成两位数有:23,25,32,35,52,53
2的倍数有:32,52
32=2×2×2×2×2
52=2×2×13
32和52最大公因数是2×2=4
【点睛】根据2的倍数特征以及求最大公因数的方法进行解答。
10. 华氏温度和摄氏温度换算公式是:华氏温度=摄氏温度×1.8+32,如果今天的华氏温度测出是86°F,那么相当于( )℃。
【答案】30
【解析】
【分析】设86℉相当于x ℃,根据公式“华氏温度=摄氏温度×1.8+32”,列出方程求解即可。
【详解】解:设86℉相当于x ℃。
1.8x+32=86
1.8x+32-32=86-32
1.8x=54
x=30
所以86℉相当于30℃。
【点睛】此题主要考查列方程解决问题,关键是要找到等量关系。
11. 储藏室长250厘米,宽200厘米。用大小相同的正方形地砖去铺正好铺满(如下图)。每块地砖的边长最长是( )厘米,用了( )块地砖。
【答案】 ①. 50 ②. 20
【解析】
【分析】根据题意,求正方形地砖的边长,就是求250和200的最大公因数,根据最大公因数的方法求出正方形的边长;再用储藏室的面积除以地砖的面积,即可解答。
【详解】250=2×5×5×5
200=2×2×2×5×5
250和200的最大公因数是2×5×5=50
每块地砖的边长最长是50厘米。
250×200÷(50×50)
=50000÷2500
=20(块)
【点睛】利用求两个数最大公因数的方法、长方形面积公式和正方形面积公式的知识进行解答。
12. 已知两个涂色正方形的周长一共是20厘米(如图所示)。那么整个图形的面积一共是( )平方厘米。
【答案】25
【解析】
【分析】观察图形可知,通过平移,可知两个涂色正方形的周长的和等于大正方形的周长,根据正方形周长公式:周长=边长×4,边长=周长÷4,代入数据,求出边长;再根据正方形面积公式:面积=边长×边长,代入数据,即可解答。
【详解】20÷4=5(厘米)
5×5=25(平方厘米)
【点睛】解答本题的关键明确通过平移,两个涂色部分正方形的周长的和等于大正方形的周长。
二、选择。(每题1分,共6分)。
13. 把长16厘米,宽12厘米长方形裁成大小相等的正方形,没有剩余。裁成的正方形边长最大是( )厘米。
A. 2B. 3C. 4D. 5
【答案】C
【解析】
【分析】根据题意,求裁成的正方形边长最大,就是求16和12的最大公因数,根据求两个数的最大公因数:两个数的公有质因数的连乘积就是这两个数的最大公因数,据此解答。
【详解】16=2×2×2×2
12=2×2×3
16和12的最大公因数数2×2=4
裁成的正方形边长最大是4厘米。
故答案为:C
【点睛】根据求最大公因数的方法进行解答。
14. 如果x+2=6,那么6x+10的结果是( )。
A. 58B. 34C. 84D. 108
【答案】B
【解析】
【分析】先解方程x+2=6,求出x的值,再把x的值代入6x+10的式子里,即可解答。
【详解】x+2=6
解:x=6-2
x=4
6×4+10
=24+10
=34
故答案为:B
【点睛】利用等式的性质1,求出方程的解,进而求出6x+10的结果。
15. 下图中,最大的长方形的面积是5平方米,那么阴影部分的面积是( )平方米。
A. B. C. D. 不确定
【答案】C
【解析】
【分析】根据题意可知,把最大的长方形平均分成6份,求其中的一份是多少平方米,用大长方形的面积除以平均分的份数,即5÷6,即可解答。
【详解】5÷6=(平方米)
故答案为:C
【点睛】解题时要与“阴影部分的面积是大长方形的几分之几”区分开。
16. 乐乐用小棒做了四棵树,这四棵树也表示树的生长趋势,依次类推,第5棵树需要( )根小棒。
A. 29B. 31C. 33D. 35
【答案】B
【解析】
【分析】观察图形可知,后面每一棵树用小棒的数量是前面小棒的数量的2倍多1,即第二棵树用小棒2×1+1=5根;第三棵树用小棒2×3+1=7根;第四棵树用小棒2×7+1=15根;第五棵树用小棒2×15+1=31根,据此解答。
【详解】根据分析可知,第二棵树需要小棒:2×1+1
2+1
=3(根)
第三棵树需要小棒:2×3+1
=6+1
=7(根)
第四棵树需要小棒:2×7+1
=14+1
=15(根)
第5棵树用小棒需要:
2×15+1
=30+1
=31(根)
故答案为:B
【点睛】根据题干中已知图形的排列特征以及数量关系,推理得出一般的结论进行解答,是解答本题的关键。
17. 连接市区和湖泊的是一条笔直的公路,星期天爸爸驾车从市区出发开往湖泊,经过了下面的路标(如下左图),过了一段时间后,又看见一个路标显示再过2千米即可抵达湖泊(如下右图)。请问,从市区算起爸爸已经行驶了( )千米。
A. 80B. 120C. 198D. 40
【答案】C
【解析】
【分析】根据题意可知,爸爸驾车从市区出发,经过第一个路标,说明爸爸驾车行驶了80千米,从第一个路标开始到第二个路标,爸爸驾车行驶了(120-2)千米;再加上市区到第一个路标的距离80千米,就是从市区算起爸爸已经行驶的多少千米。
【详解】80+(120-2)
=80+118
=198(千米)
故答案为:C
【点睛】解答本题的关键明确爸爸驾车行驶的距离分两部分;从市区到第一个路标时,是80千米;从第一个路标到第二个路标行驶120-2千米;进而求出爸爸从市区算起行驶多少千米。
18. 如图所示,阴影部分面积( )空白的部分面积。
A. >B. =C. <D. 无法确定
【答案】C
【解析】
【分析】观察图形可知,大半圆的半径与小半圆的直径相等;设大半圆的半径为2,则小半圆的半径为2÷2=1;阴影部分面积等于半径是1的圆的面积;空白面积等于大半圆的面积减去小半圆的面积;根据圆的面积公式:π×半径2;代入数据,求出空白部分面积和阴影部分面积,再进行比较,即可解答。
【详解】设大圆半径为2,则小半圆半径为2÷2=1
空白部分面积:π×22÷2-π×12÷2
=2π-π
=π
阴影部分面积:π×12=π
π>π;阴影部分面积<空白处面积。
故答案为:C
【点睛】利用圆的面积公式进行解答,注意阴影部分是一个直径等于大半圆的半径。
三、计算题。(共28分)
19. 直接写出得数。
1002=
【答案】1;;;;10000
;;;;1
【解析】
详解】略
20. 解方程。
1-0.8x=0.6 12x+3x=6
【答案】;;
【解析】
【分析】,等式的两边同时加,方程得解;
1-0.8x=0.6,等式两边同时减0.8x,得1=0.6+0.8x,两边再时减0.6,得0.4=0.8x,两边再同时除以0.8,方程得解;
12x+3x=6,先化简方程左边得15x=6,等式两边再同时除以15,方程得解。
【详解】
解:
1-0.8x=0.6
解:1-0.8x+0.8x=0.6+0.8x
1=0.6+0.8x
1-0.6=0.6+0.8x-0.6
0.4=0.8x
0.8x ÷0.8=0.4÷0.8
12x+3x=6
解:15 x=6
15 x÷15=6÷15
21. 下面各题,能简便就简便计算。
【答案】;;
;2;
【解析】
【分析】,根据加法结合律,原式化为:+(+),再进行计算;
,根据减法性质,原式化:--,再进行计算;
,按照从左向右的顺序进行计算;
,根据加法结合律,原式化为:+(+),再进行计算;
,根据加法交换律和结合律,原式化为:(+)+(+),再进行计算;
,把化为1-;化为-;化为-;化为-,原式化为:1-+-+-+-,再进行计算。
【详解】
=+(+)
=+1
=
=--
=-
=-
=
=+-
=-
=
=+(+)
=+
=+
=
=(+)+(+)
=1+1
=2
=1-+-+-+-
=1-
=
四、看图计算。(每题3分,共6分)
22. 求阴影部分的面积。
【答案】36cm2
【解析】
【分析】观察图形可知,阴影部分面积等于直径6cm圆的面积加上边长为6cm的正方形面积减去直径6cm圆的面积,由此可知,阴影部分面积=边长为6cm正方形面积;根据正方形面积公式:边长×边长,代入数据,即可解答。
【详解】6×6=36(cm2)
23. 选择合适的数据求圆的周长。
【答案】50.24cm
【解析】
【分析】根据圆的特征可知,通过圆心并且两端点都在圆上的线段是直径,由此可知,圆的直径是16cm,再根据圆的周长公式:π×直径,代入数据,即可解答。
【详解】3.14×16=50.24(cm)
五、操作题。(共8分)
24. 请在下面的方格图中进行操作。
(1)在下面的方格图中画一个圆,要求所画的圆经过A、B两点,用数对表示圆心O的位置是( )。
(2)在所画的圆中画出一组互相垂直的对称轴。
【答案】(1)(4,3);图见详解(答案不唯一)。
(2)见详解
【解析】
【分析】(1)连接A、B两点,以线段AB的长作为圆的直径,线段AB的中点作为圆心O,并用数对表示圆心的位置,据此画圆即可。
(2)过圆心O画两条互相垂直的直径,那么这两条直径所在的直线就是这个圆的一组互相垂直的对称轴。
【详解】(1)如图,圆心O的位置是(4,3)。
(2)作图如下:
【点睛】解答此题的关键是根据数对确定圆心的位置,然后再按规定的圆的直径画圆和圆的对称轴。
25. 甲、乙两市2020年上半年的降水量统计如下。
(1)完成下图所示的折线统计图。
(2)甲市降水量最高月份与最低月份相差( )毫米。
(3)( )月份,甲、乙两市降水量最接近;( )月份,甲、乙两市降水量相差最大。
【答案】(1)见详解
(2)61
(3)6;4
【解析】
【分析】(1)根据统计表提供的数据,绘制折线统计图;
(2)观察统计图,找出甲市降水量最高的月份与最低的月份,再相减即可;
(3)观察统计图,找出几月份,甲、乙两市降水量最接近。几月份,甲、乙两市降水量相差最大。
【详解】(1)
(2)68-7=61(毫米)
甲市降水量最高月份与最低月份相差61毫米;
(3)6月份甲、乙两市降水量最接近;4月份甲、乙两市降水量相差最大。
【点睛】本题考查统计图的绘制,以及根据统计图提供的信息,解答问题。
六、解决实际问题。(每题4分,共24分)
26. 学校少先队员一共采集植物标本289件,比昆虫标本的4倍还多29件,采集昆虫标本多少件?(列方程解答)
【答案】65件
【解析】
【分析】设采集昆虫标本x件,采集植物标本289件,比昆虫标本的4倍还多29件,即昆虫标本的件数×4+29=采集植物标本件数;列方程:4x+29=289,解方程,即可解答。
【详解】解:设采集昆虫标本x件。
4x+29=289
4x=289-29
4x=260
x=260÷4
x=65
答:采集昆虫标本65件。
【点睛】根据方程的实际应用,利用采集植物标本件数与昆虫标本件数之间的关系,设出未知数,找出先关的量,列方程,解方程。
27. 下图是一个长方形花坛,长24米,宽16米,中间有两条宽都是2米的小路(阴影部分)。种花部分(空白部分)的面积是多少平方米?
【答案】308平方米
【解析】
【分析】根据题意,求空白处面积,实际上就是求长为(24-2),宽为(16-2)米的长方形面积;根据长方形面积公式:面积=长×宽,代入数据,即可解答。
【详解】(24-2)×(16-2)
=22×14
=308(平方米)
答:种花部分(空白部分)的面积是308平方米。
【点睛】解答本题的关键是:利用“压缩法”,将小路挤去,即可求出空白处的面积。
28. 学校运来一堆黄沙,砌围墙用去吨,铺跑道用去吨,还剩下吨。这堆黄沙原来有多少吨?
【答案】吨
【解析】
【分析】根据题意,用砌围墙用去吨+铺跑道用去吨+还剩下吨,就是这堆黄沙原来有多少吨,据此解答。
【详解】++
=++
=+
=(吨)
答:这堆黄沙原来有吨。
【点睛】利用分数加减法的计算进行解答。
29. 学校五年级人数不超过200人参加团体操表演,无论每行排20人还是24人,都能够排成整数行而没有剩余。五年级一共有多少人?
【答案】120人
【解析】
【分析】根据题意,求出20和24的最小公倍数,就是五年级的人数,根据最小公倍数的求法:两个数的公有质因数与每一个独有质因数的连乘积,就是最小公倍数,据此解答。
【详解】20=2×2×5
24=2×2×2×3
20和24的最小公倍数是2×2×5×2×3=120
五年级一共有120人。
答:五年级一共有120人。
【点睛】利用求最小公倍数的方法解答问题。
30. 甲、乙两地相距1260千米,客、货两车同时从甲、乙两地出发相向而行,两车经过6小时相遇。已知客车每小时行112千米,货车每小时行多少千米?
【答案】98千米
【解析】
【分析】根据题意,设货车每小时行x千米,6小时行6x千米;客车每小时行112千米,6小时行112×6千米,客车行驶的距离+货车行驶的距离=甲、乙两地的距离,列方程:112×6+6x=1260,解方程,即可解答。
【详解】解:设货车每小时行x千米。
112×6+6x=1260
672+6x=1260
6x=1260-672
6x=588
x=588÷6
x=98
答:货车每小时行98千米。
【点睛】利用方程的实际应用,根据速度、时间和距离三者的关系,设出未知数,找出相关的量,列方程,解方程。
31. 一个半径18米的圆形水池,在它的四周铺一条2米宽的石子路(如下图所示)。这个石子路的面积是多少平方米?
【答案】238.64平方米
【解析】
【分析】根据题意可知,求这个石子路的面积,就是求圆环的面积,根据圆环的面积公式:面积=π×(大圆半径2-小圆半径2),大圆半径=(18+2)米,小圆半径=18米,代入数据,即可解答。
【详解】3.14×[(18+2)2-182]
=3.14×[202-324]
=314×[400-324]
=3.14×76
=238.64(平方米)
答:这个石子路的面积是238.64平方米。
【点睛】利用圆环的面积公式进行解答,关键是熟记公式。
1月份
2月份
3月份
4月份
5月份
6月份
甲市降水量/毫米
32
7
30
25
60
68
乙市降水量/毫米
25
32
15
70
65
72
相关试卷
这是一份2020-2021学年江苏南京鼓楼区五年级下册数学期末试卷及答案,共20页。试卷主要包含了计算,填空,选择题,操作题,解决问题等内容,欢迎下载使用。
这是一份2021-2022学年江苏徐州鼓楼区五年级上册数学期末试卷及答案,共14页。试卷主要包含了计算,填空,选择,操作题,解决实际问题等内容,欢迎下载使用。
这是一份江苏南京鼓楼区2023-2024四年级数学上册期末试卷及答案,共12页。