数学北师大版(2024)4 整式的乘法练习
展开
这是一份数学北师大版(2024)4 整式的乘法练习,文件包含北师大版数学七下重难点培优练习专题12整式的乘法原卷版doc、北师大版数学七下重难点培优练习专题12整式的乘法解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
【知识点1 整式的乘法】
【题型1 整式乘法中的求值问题】
【例1】(2021•开平区一模)已知等式(x+p)(x+q)=x2+mx+36(p,q为正整数),则m的值不可能是( )
A.37B.13C.20D.36
【变式1-1】(2021春•潍坊期末)若(x+a)(x﹣5)=x2+bx﹣10,则ab﹣a+b的值是( )
A.﹣11B.﹣7C.﹣6D.﹣55
【变式1-2】(2020秋•播州区期末)若x+y=2,xy=﹣1,则(1﹣2x)(1﹣2y)的值是 .
【变式1-3】(2021春•江都区期中)在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.
(1)求出a,b的值;
(2)在(1)的条件下,计算(2x+a)(x+b)的结果.
【题型2 整式乘法中的不含某项问题】
【例2】(2021春•蜀山区校级期中)关于x的代数式(mx﹣2)(2x+1)+x2+n化简后不含有x2项和常数项.
(1)分别求m,n的值.
(2)求m2020n2021的值.
【变式2-1】(2021春•通川区校级月考)若多项式x2+mx﹣8和x2﹣3x+n的的乘积中不含x2和x3的项,求m+n的值.
【变式2-2】(2021春•金牛区校级月考)已知(x3+mx+n)(x2﹣3x+4)展开式中不含x3和x2项.
(1)求m、n的值;
(2)当m、n取第(1)小题的值时,求(m+n)(m2﹣mn+n2)的值.
【变式2-3】(2021春•太湖县期末)【知识回顾】
七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.
【理解应用】
(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;
(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;
【能力提升】
(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.
【题型3 整式乘法的计算】
【例3】(2020秋•河北区期末)计算:
(1)
(2)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)
【变式3-1】(2021春•九龙坡区校级期中)计算:
(1)2x2y(xy+1);
(2)(x﹣2y)(y﹣x).
【变式3-2】(2021春•海陵区校级月考)计算:
(1)﹣3x2(2x﹣4y)+2x(x2﹣xy).
(2)(3x+2y)(2x﹣3y)﹣3x(3x﹣2y).
【变式3-3】(2021春•未央区月考)小奇计算一道整式的混合运算的题:(x﹣a)(4x+3)﹣2x,由于小奇将第一个多项式中的“﹣a”抄成“+a”,得到的结果为4x2+13x+9.
(1)求a的值.
(2)请计算出这道题的正确结果.
【题型4 整式乘法的应用】
【例4】(2021春•铁西区期中)有一电脑程序:每按一次按键,屏幕的A区就会自动减去a,同时B区就会自动加上3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16(如图所示).
例如:第一次按键后,A,B两区分别显示:25﹣a,﹣16+3a.
(1)那么第二次按键后,A区显示的结果为 ,B区显示的结果为 .
(2)计算(1)中A、B两区显示的代数式的乘积,并求当a=2时,代数式乘积的值.
【变式4-1】(2021春•碑林区校级期中)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.
(1)求铺设草坪的面积是多少平方米;
(2)当a=10,b=4时,需要铺设草坪的面积是多少?
【变式4-2】(2021春•成都期末)(1)如图是小颖家新房的户型图,小颖的爸爸打算把两个卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格为每平方米a元,那么购买地砖至少需要多少元?
(2)如果房屋的高度是h米,现在需要在客厅和两个卧室四周的墙上贴墙纸,那么至少需要多少平方米的墙纸?如果某种墙纸的价格为每平方米b元,那么购买所需的墙纸至少要多少元?(计算时不扣除门、窗所占的面积,忽略墙的厚度)
【变式4-3】(2021春•莲湖区期末)已知有甲、乙两个长方形,它们的边长如图所示,面积分别为S1,S2.
(1)S1与S2的大小关系为:S1 S2.
(2)若一个正方形的周长与甲的周长相等.
①求该正方形的边长(用含m的代数式表示).
②若该正方形的面积为S3,试探究:S3与S2的差(即S3﹣S2)是否为常数?若为常数,求出这个常数,如果不是,请说明理由.
【知识点2 整式的除法】
【题型5 整式除法的应用】
【例5】(2021春•上城区期末)一个长方形的面积是15x3y5﹣10x4y4+20x3y2,一边长是5x3y2,则它的另一边长是( )
A.2y3﹣3xy2+4B.3y3﹣2xy2+4C.3y3+2xy2+4D.2xy2﹣3y3+4
【变式5-1】(2020•台湾)计算2x2﹣3除以x+1后,得商式和余式分别为何?( )
A.商式为2,余式为﹣5B.商式为2x﹣5,余式为5
C.商式为2x+2,余式为﹣1D.商式为2x﹣2,余式为﹣1
【变式5-2】(2020秋•袁州区校级期中)已知一个长方形的面积是6a2﹣4ab+2a,且它的一条边长为2a,则长方形的周长为 .
【变式5-3】(2021春•潍坊期末)若多项式A除以2x2﹣3,得到的商式为3x﹣4,余式为5x+2,则A= .
【题型6 整式乘法中的规律探究】
【例6】(2020秋•邹城市期末)观察下列各式
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1
…
(1)分解因式:x5﹣1= ;
(2)根据规律可得(x﹣1)(xn﹣1+…+x+1)= (其中n为正整数);
(3)计算:(3﹣1)(350+349+348+…+32+3+1).
【变式6-1】(2021春•包河区期末)探究规律,解决问题:
(1)化简:(m﹣1)(m+1)= ,(m﹣1)(m2+m+1)= .
(2)化简:(m﹣1)(m3+m2+m+1),写出化简过程.
(3)化简:(m﹣1)(mn+mn﹣1+mn﹣2+…+1)= .(n为正整数,mn+mn﹣1+mn﹣2+…+1为n+1项多项式)
(4)利用以上结果,计算1+3+32+33+…+3100的值.
【变式6-2】(2021春•合肥期中)观察以下等式:
(x+1)(x2﹣x+1)=x3+1
(x+3)(x2﹣3x+9)=x3+27
(x+6)(x2﹣6x+36)=x3+216
…
(1)按以上等式的规律,填空:(a+b)( )=a3+b3
(2)利用多项式的乘法法则,证明(1)中的等式成立.
(3)利用(1)中的公式化简:(x+y)(x2﹣xy+y2)﹣(x﹣y)(x2+xy+y2)
【变式6-3】(2020秋•石狮市校级月考)探究应用:
(1)计算:(x﹣1)(x2+x+1)= ;(2x﹣y)(4x2+2xy+y2)= .
(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母a、b的等式表示该公式为: .
(3)下列各式能用第(2)题的公式计算的是 .
A.(m+2)(m2+2m+4)
B.(m﹣2n)(m2+2mn+2n2)
C.(3﹣n)(9+3n+n2)
D.(m﹣n)(m2+2mn+n2)
(4)设A=109﹣1,利用上述规律,说明A能被37整除.单项式×单项式:系数相乘,字母相乘.
单项式×多项式:乘法分配律.
多项式×多项式:乘法分配律.
单项式÷单项式:系数相除,字母相除.
多项式÷单项式:除法性质.
多项式÷多项式:大除法.
相关试卷
这是一份北师大版数学七下期末重难点培优训练专题04 整式的乘法(2份,原卷版+解析版),文件包含北师大版数学七下期末重难点培优训练专题04整式的乘法原卷版doc、北师大版数学七下期末重难点培优训练专题04整式的乘法解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份人教版(2024)七年级下册6.3 实数优秀当堂达标检测题,文件包含人教版数学七下同步培优训练专题68实数的应用重难点培优原卷版doc、人教版数学七下同步培优训练专题68实数的应用重难点培优解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份人教版数学七下重难点培优训练专题7.4 坐标与平移(2份,原卷版+解析版),文件包含人教版数学七下重难点培优训练专题74坐标与平移原卷版doc、人教版数学七下重难点培优训练专题74坐标与平移解析版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。