精品解析:福建省莆田砺青中学2023-2024学年九年级上学期第三次月考数学试题(解析版)-A4
展开
这是一份精品解析:福建省莆田砺青中学2023-2024学年九年级上学期第三次月考数学试题(解析版)-A4,共25页。
A. |﹣3|B. ﹣2C. 0D. π
【答案】B
【解析】
【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.
【详解】在实数|-3|,-2,0,π中,
|-3|=3,则-2<0<|-3|<π,
故最小的数是:-2.
故选B.
【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.
2. 下列各组数中,能作为一个三角形三边边长的是( )
A. 1,1,2B. 1,2,4C. 2,3,4D. 2,3,5
【答案】C
【解析】
分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】A、1+1=2,不满足三边关系,故错误;
B、1+2<4,不满足三边关系,故错误;
C、2+3>4,满足三边关系,故正确;
D、2+3=5,不满足三边关系,故错误.
故选C.
【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.
3. 若n边形的内角和是720°,则n的值是( )
A. 5B. 6C. 7D. 8
【答案】B
【解析】
【分析】根据多边形的内角和公式(n-2)•180°列式计算即可得解.
【详解】根据题意,(n﹣2)•180°=720°,
解得n=6.
故选B.
【点睛】本题考查了多边形的内角和公式,是基础题,熟记公式是解题的关键.
4. 如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A. 15°B. 30°C. 45°D. 60°
【答案】A
【解析】
【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
【详解】解:∵等边三角形ABC中,AD⊥BC,
∴BD=CD,
即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB-∠ECB=15°,
故选A.
【点睛】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.
5. 投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )
A. 两枚骰子向上一面的点数之和大于1
B. 两枚骰子向上一面的点数之和等于1
C. 两枚骰子向上一面的点数之和大于12
D. 两枚骰子向上一面的点数之和等于12
【答案】D
【解析】
【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.
【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;
B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;
C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;
D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;
故选:D.
【点睛】此题主要考查了随机事件的判断,关键是掌握随机事件,确定性事件的定义.
6. 如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A. B. 3C. 2D.
【答案】A
【解析】
【分析】由题意易得MN垂直平分AD,AB=10,则有AD=4,AF=2,然后可得,
进而问题可求解.
【详解】解:由题意得:MN垂直平分AD,,
∴,
∵BC=6,AC=8,∠C=90°,
∴,
∴AD=4,AF=2,,
∴;
故选A.
【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.
7. 已知m=,则以下对m的估算正确的( )
A. 2<m<3B. 3<m<4C. 4<m<5D. 5<m<6
【答案】B
【解析】
【分析】直接化简二次根式,得出的取值范围,进而得出答案.
【详解】∵m==2+,
1<<2,
∴3<m<4,
故选B.
【点睛】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
8. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )
A. B. C. D.
【答案】B
【解析】
【详解】根据勾股定理,AB=,
BC=,
AC=,
所以△ABC的三边之比为=,
A、三角形的三边分别为2,,,三边之比为2:=,故本选项错误,不符合题意;
B、三角形的三边分别为2,4,,三边之比为2:4:2=1:2:,故本选项正确,符合题意;
C、三角形的三边分别为2,3,,三边之比为2:3:,故本选项错误,不符合题意;
D、三角形的三边分别为,,4,三边之比为:4,故本选项错误,不符合题意.
故选:B.
9. 如图,等边内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边的内心成中心对称,则圆中的黑色部分的面积与的面积之比是( )
A. B. C. D.
【答案】A
【解析】
【分析】由题意,得圆中黑色部分的面积是圆面积的一半,令BC=2a,则BD=a,根据勾股定理,得出AD=,同时在Rt△BOD中,OD=,进而求出黑色部分的面积以及等边三角形的面积,最后求出答案.
【详解】解:令内切圆与BC交于点D,内切圆的圆心为O,连接AD,OB,
由题可知,圆中黑色部分的面积是圆面积的一半,
令BC=2a,则BD=a,
在等边三角形ABC中
AD⊥BC,OB平分∠ABC,
∴∠OBD=∠ABC=30°,
由勾股定理,得AD=,
Rt△BOD中,OD=tan30°×BD=,
∴圆中的黑色部分的面积与的面积之比为.
故选:A.
【点睛】本题考查了等边三角形的性质,内切圆的性质和面积,等边三角形的面积以及勾股定理求边长,正确地计算能力是解决问题的关键.
10. 如图,抛物线的对称轴是,并与x轴交于A,B两点,若,则下列结论中:①;②;③;④若m为任意实数,则,正确的个数是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
【分析】根据函数图像的开口方向,对称轴,图像与y轴的交点,即可判断①;根据对称轴x= - 2,OA=5OB,可得OA=5,OB=1,点A(-5,0),点B(1,0),当x=1时,y=0即可判断②;根据对称轴x= - 2以及a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=-2时y=4a-2b+c即可判断④.
【详解】解:①观察图像可知a>0,b>0,c<0,
∴abc<0,
故①错误
②∵对称轴为直线x= - 2 ,OA=5OB,可得OA=5 ,OB=1
∴点A(-5,0),点B(1,0)
∴当x=1时,y=0即a+b+c= 0
∴(a+c)2-b2=(a+b+c)(a+c-b)=0
故②正确
③抛物线的对称轴为直线x=- 2,即 =-2
∴b=4a
∵a+b+c=0
∴ 5a+c=0
∴c=-5a
∴9a+4c=-11a<0,
故③正确
④ 当x=-2时函数有最小值y=4a-2b+c,
当x=m时,am2+bm+c≥4a-2b+c
整理得,若m为任意实数,则am2+bm+2b≥4a,
故④正确
故选C
【点睛】本题考查了二次函数图像与系数的关系,二次函数图像上点的坐标特征,解决本题的关键是掌握二次函数图像与系数关系.
二.填空题(共4小题)
11. 计算: ________
【答案】
【解析】
【分析】本题考查的是特殊角的三角函数值的计算,代入特殊角的三角函数值计算即可.
【详解】解:
原式
12. 石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅,这个数用科学记数法表示为_______.
【答案】
【解析】
【分析】根据科学记数法的表示方法解答即可.
【详解】解:
故答案为:
【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,n为整数,解题的关键是要确定a的值及n的值.
13. 某水库堤坝的横断面如图所示,迎水坡AB的坡度是1︰ ,堤坝高BC=50m,则AB=________m.
【答案】100
【解析】
【详解】解:根据坡度可得:BC:AB=1:2,
∵BC=50m,
∴AB=100m.
故答案为:100.
【点睛】考点:三角函数的应用
14. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)
【答案】20
【解析】
【分析】设绳索长尺,根据两种量竿的方法建立方程,解方程即可得.
【详解】解:设绳索长尺,
由题意得:,
解得,
即绳索长20尺,
故答案为:20.
【点睛】本题考查了一元一次方程的应用,正确建立方程是解题关键.
15. 把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
【答案】
【解析】
【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
16. 勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉.生活中到处可见黄金分割的美.如图,线段AB=1,点P1是线段AB的黄金分割点(AP1
相关试卷
这是一份精品解析:福建省莆田市擢英中学2023-2024学年九年级上学期月考数学试题(解析版)-A4,共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份精品解析:福建省莆田市城厢区莆田哲理中学2023-2024学年九年级上学期月考数学试题(解析版)-A4,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份精品解析:福建省莆田砺志学校2023-2024学年九年级上学期月考数学试题(解析版)-A4,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。