所属成套资源:华师大版(2024)七年级数学下册 全册课件
初中数学华东师大版(2024)七年级下册(2024)第6章 一次方程组6.4 实践与探究教课课件ppt
展开
这是一份初中数学华东师大版(2024)七年级下册(2024)第6章 一次方程组6.4 实践与探究教课课件ppt,共17页。PPT课件主要包含了请你设计一种分法等内容,欢迎下载使用。
1.学会用二元一次方程组(或三元一次方程组)来解决实际问题.(难点)
列二元一次方程组解实际问题的一般步骤: (1)审,认真审题,明确已知量、未知量,理解题意和题目中的数量关系,找到两个等量关系; (2)设,设未知数,可直接设,也可间接设; (3)列,根据等量关系列方程组; (4)解,求出所列方程组的解; (5)验,既要检验所求出的方程组的解是否符合所列方程组,又要检验其是否符合题意; (6)答,写出答案,包括单位名称.
问题1 要用20张白卡纸做包装盒,准备把这些白卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张白卡纸可以做2个侧面,或者做3个底面.如果1个侧面和2个底面可以做成一个包装盒,那么如何分才能使做成的侧面和底面正好配套?
知识点1 用二元一次方程组解决实际问题
通过试验可以发现: 1张白卡纸能做0个盒子; 2张白卡纸能做1个盒子,1张做侧面,1张做底面; 3张白卡纸能做2个盒子,1张做侧面,2张做底面; 4张白卡纸能做3个盒子,2张做侧面,2张做底面; 5张白卡纸能做4个盒子,2张做侧面,3张做底面; 6张白卡纸能做4个盒子,2张做侧面,4张做底面; 7张白卡纸能做6个盒子,3张做侧面,4张做底面; 第8张和第1张情况类似; 第9张和第2张情况类似……
归纳:用n表示纸的张数,若n=7k+1(k是自然数),情况和1张的情况相同;若n=7k+2(k是自然数),情况和2张的情况相同;……,若n=7k+ 6(k是自然数),情况和6张的情况相同;若n=7k (k是自然数),盒子的数量是6k.
由上述归纳可知:20张卡纸,20=7×2+6,余数是6,因此和6张相似,可以做4个盒子,14张纸可以做6×2=12个盒子,因此20张白卡纸可以做16个盒子.
那么还有没有其他的简便方法呢?
所以可做16个包装盒.
根据题意,列方程组试试:
想一想:如果一张白卡纸可以适当的套裁出一个侧面和一个底面,那么,又怎样分这些白卡纸,才能既使做出的侧面和底面配套,又能充分地利用白卡纸?
用8张做侧面,11张做底面,另一张套裁出1个侧面 ,1个底面,则共可做侧面17个,底面34个,正好配成17个包装盒,较充分利用材料.
某农场300名职工耕种5l公顷土地,计划种植水稻、棉花和蔬菜,已知种植各种植物每公顷所需劳动力人数及投入的设备资金如下表:
已知该农场计划在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的设备资金正好够用?
分析 本题中有哪些已知量? (1)安排种三种农作物的人数共300名; (2)安排种三种农作物的土地共51公顷; (3)每种农作物每公顷所需要的职工数; (4)每种农作物每公顷需要投入的资金; (5)三种农作物需要的资金和为67万元.
本题也可以列三元一次方程组求解,大家可以尝试用这种方法求解.
知识点2 用二元一次方程组解决几何问题
问题2 小明在拼图时,发现8个大小一样的长方形,恰好可以拼成如图所示的一个大长方形.
小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图那样的正方形.咳,怎么中间还留下了一个洞,恰好是边长为2mm的小正方形!
你能求出这些长方形的长和宽吗?
1.泉州是个美丽的城市.30名工人一共种植了1360平方米草坪,已知一名男工人种植50平方米草坪,一名女工人种植30平方米草坪,各有男、女工人多少人?
2.如图,用8块相同的小长方形地砖拼成一个大的长方形图案,已知大长方形的周长为200cm,那么每个小长方形地砖的面积是多少?
相关课件
这是一份初中数学华师大版七年级下册第7章 一次方程组7.4 实践与探索授课课件ppt,共15页。PPT课件主要包含了学习目标,重难点,知识回顾,教学过程,探究新知,例题精讲等内容,欢迎下载使用。
这是一份初中数学华师大版七年级下册第7章 一次方程组7.4 实践与探索课文内容ppt课件,共19页。PPT课件主要包含了解方程组得,x23y7,x30y10等内容,欢迎下载使用。
这是一份华师大版七年级下册第7章 一次方程组7.4 实践与探索教学演示ppt课件,共16页。PPT课件主要包含了关键是找出等量关系,分析找等量关系,1+20%x,1-10%y,得到二元一次方程组,整理方程组得,解方程组得,根据题意得,化简得,x28y30等内容,欢迎下载使用。