江苏省连云港市新海初级中学2023-2024学年九年级上学期第一次月考数学试题(原卷版)-A4
展开
这是一份江苏省连云港市新海初级中学2023-2024学年九年级上学期第一次月考数学试题(原卷版)-A4,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
(满分:150分时间:120分钟)
友情提醒:试卷中所有答案都必须书写在答题卡指定的位置上,答案写在试卷上无效.
一、选择题(每小题3分,共24分)
1. 下列方程中,是一元二次方程的是( )
A. B.
C. D.
2. 若关于的一元二次方程的一个根是,则的值为( )
A. B. C. D.
3. 已知关于x的一元二次方程(m,h,k均为常数且)的解是,,则关于x的一元二次方程的解是( )
A. ,B. ,C. ,D. ,
4. 如图,是的直径,D,C是上的点,,则的度数是( )
A. B. C. D.
5. 下列说法中正确的说法有( )个
①到定点的距离等于定长的所有点组成的图形是圆;②长度相等的两条弧是等弧;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦,并且平分弦所对的弧;⑤圆周角的度数等于圆心角的一半;⑥直径所对的圆周角是直角.
A. 1B. 2C. 3D. 4
6. 圆内接四边形中,若,则等于( )
A. B. C. D.
7. 如图,点,,,均在直线上,点在直线外,则经过其中任意三个点,最多可画出圆的个数为( )
A. 3个B. 4个C. 5个D. 6个
8. 如图,已知是的一条弦,直径与弦交于点,且,已知,,则点到的距离为( )
A. B. C. 2D.
二、填空题(每小题3分,共24分)
9. 方程的根是_______________.
10. 如图,、、是上三点,,则______.
11. 建设美图城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.设该市改造老旧小区投入资金的年平均增长率为,则所列方程为______.
12. 直径为中,弦,则弦所对的圆心角是______.
13. 若关于的一元二次方程有两个不相等的实数根,则的取值范围是______.
14. 已知,是方程的两根,则______.
15. 图1为一圆形纸片,、、为圆周上三点,其中为直径,以为折线将纸片向右折叠,纸片盖住部分的,且交于点,如图2所示,若为,则的度数______.
16. 已知矩形为矩形内一点,且,若点绕点逆时针旋转到点,则的最小值为______.
三、解答题(本大题共11小题,共102分.解答时应写出文字说明、证明过程或演算步骤)
17. 解方程:
18. 解方程:(公式法)
19. 解方程:(配方法)
20. 已知:关于的一元二次方程
(1)求证:无论为何值,方程总有两个实数根;
(2)若为方程的一个根,且满足,求整数的值.
21. 如图,的弦AB、CD的延长线相交于点,且.求证:.
22. 如图,在单位长度为的正方形网格中建立一直角坐标系,一条圆弧经过网格点、、,请在网格图中进行下列操作(以下结果保留根号):
(1)利用网格作出该圆弧所在圆的圆心点的位置,并写出点的坐标为_____;
(2)若画出该圆弧所在圆,则在整个平面直角坐标系网格中该圆共经过______个格点;
(3)判断点与的位置关系?并说明理由.
23. 已知:如图,在中,,,,以点为圆心,为半径圆与交于点,
(1)求的长;
(2)若,求的度数;
(3)若点是线段上的动点,则线段的长度取值范围是______.
24. 如图,老李想用长为栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈,并在边上留一个宽的门(建在处,另用其他材料).
(1)当羊圈的长和宽分别为多少米时,能围成一个面积为的羊圈?
(2)羊圈的面积能达到吗?如果能,请你给出设计方案;如果不能,请说明理由.
(3)如何围成一个面积最大的矩形羊圈,求此时为多少米?
25. 在花博园附近某盆栽销售处发现:进货价为每盆元,销售价为每盆元的某盆栽平均每天可售出盆.现此店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每盆降价元,那么平均每天就可多售出盆,设每盆降价元.
(1)现在每天卖出_____盆,每盆盈利_____元(用含的代数式表示);
(2)求当为何值时,平均每天销售这种盆栽能盈利元,同时又要使顾客得到较多的实惠.
26. 如图,在的网格纸中,每个小正方形的边长都为1,动点分别从点出发向右移动,点的运动速度为每秒2个单位,点的运动速度为每秒1个单位,当点运动到点时,两个点都停止运动.
(1)请你在图1中,求出2秒时的线段的长度:
(2)如图2,在动点运动的过程中,当运动时间为何值时,?
(3)在动点运动的过程中,能否成为等腰三角形?若能,请求出相应的时间;若不能,请说明理由.
27. 【概念回顾】我们知道圆是所有到定点(圆心)距离等于定长(半径)的点组成的平面图形.由此可知,如图①,若,则点A、、均在以为圆心,为半径的圆上.
【知识运用】
如图②,在中,.将绕顶点A逆时针旋转,得到,连结、.
(1)若,求的大小.
(2)若,,当时,四边形面积最大值为______.
【拓展应用】
如图③,将边长为7的等边绕顶点逆时针旋转,得到,点为中点.过点作交于点,当时,则长的取值范围是______.
相关试卷
这是一份江苏省连云港市新海初级中学2023-2024学年九年级上学期第一次月考数学试题(解析版)-A4,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省连云港市新海初级中学2024—-2025学年九年级上学期数学第一次月考 (无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省连云港市新海初级中学2023-2024学年七年级下学期期中数学试题(原卷版+解析版),文件包含江苏省连云港市新海初级中学2023-2024学年七年级下学期期中数学试题原卷版docx、江苏省连云港市新海初级中学2023-2024学年七年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。