搜索
    上传资料 赚现金
    英语朗读宝

    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(2份,原卷版+教师版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版).docx
    • 练习
      人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版).pdf
    • 练习
      人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版).docx
    • 练习
      人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版).pdf
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版)第1页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版)第2页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版)第3页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版)第1页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版)第2页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(教师版)第3页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版)第1页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版)第2页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版)第3页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版)第1页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版)第2页
    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(原卷版)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(2份,原卷版+教师版)

    展开

    这是一份人教A版高中数学必修第二册同步讲练测 第10章 概率 章节复习+单元测试AB卷(2份,原卷版+教师版),文件包含人教A版高中数学必修第二册同步讲练测第10章概率章节复习+单元测试AB卷教师版docx、人教A版高中数学必修第二册同步讲练测第10章概率章节复习+单元测试AB卷教师版pdf、人教A版高中数学必修第二册同步讲练测第10章概率章节复习+单元测试AB卷原卷版docx、人教A版高中数学必修第二册同步讲练测第10章概率章节复习+单元测试AB卷原卷版pdf等4份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
    第10章 概率 重难点归纳总结考点一 古典概型【例1-1】某校动漫社团成员共6人,其中社长2人,现需要选派3人去参加动漫大赛,则至少有1名社长人选的概率为(    )A. B. C. D.【例1-2】2022年下半年,我国新冠肺炎疫情“多点散发”的特点愈加明显,为了有效阻断疫情的快速传播,全国各地均提供了生活必需品线上采购服务,某地区为了更好的做好此项工作,高质量服务于百姓生活,对爱好线上采购生活必需品的人员进行了调查,随机调查了100位线上采购爱好者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区爱好线上采购生活必需品人员的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位线上采购爱好者的年龄位于区间的概率;(3)工作人员为了确定20岁以下和80岁以上是否具有主动性和代表性,在参与调查的100位线上采购爱好者中20岁以下和80岁以上人员中抽取两名进行电话访问,求被访问者恰有一名是80岁以上的概率.【一隅三反】1.欧几里得大约生活在公元前330~前275年之间,著有《几何原本》《已知数》《圆锥曲线》《曲面轨迹》等著作.若从上述4部书籍中任意抽取2部,则抽到《几何原本》的概率为(    )A. B. C. D.2.在1,2,3,4中任取2个不同的数,作为a,b的值,使方程有2个不相等的实数根的概率为(    )A. B. C. D.3.某工厂为了检验某产品的质量,随机抽取100件产品,测量其某一质量指数,根据所得数据,按分成5组,得到如图所示的频率分布直方图.(1)估计该产品这一质量指数的中位数;(2)若采用分层抽样的方法从这一质量指数在和内的该产品中抽取6件,再从这6件产品中随机抽取2件,求这2件产品不是取自同一组的概率.4.某高中高一500名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:,,…,,并整理得到频率分布直方图如图所示.(1)从总体的500名学生中随机抽取一人,估计其分数小于60的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间内的人数;(3)估计随机抽取的100名学生分数的众数,估计测评成绩的75%分位数;(4)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.考点二 事件的运算与关系【例2-1】已知件产品中有件正品,其余为次品.现从件产品中任取件,观察正品件数与次品件数,下列选项中的两个事件互为对立事件的是(    )A.恰好有件次品和恰好有件次品 B.至少有件次品和全是次品C.至少有件正品和至少有件次品 D.至少有件次品和全是正品【例2-2】甲、乙两个元件构成一并联电路,设E=“甲元件故障”,F=“乙元件故障”,则表示电路故障的事件为(    )A.EF B.EF C.E D.【一隅三反】1.(多选)现从3名男生和2名女生中选3名同学参加演讲比赛,下列各对事件中为互斥事件的是(    )A.事件M“选取的3人都是男生”,事件N“2名女生都被选中”B.事件M“选取的3人中至少有1名女生”,事件N“选取的3人中至少有1名男生”C.事件M“选取的3人中恰有1名男生”,事件N“选取的3人中恰有1名女生”D.事件M“选取的3人中至多有1名女生”,事件N“选取的3人中恰有1名男生”2.某小组有1名男生和2名女生,从中任选2名学生参加围棋比赛,事件“至多有1名男生”与事件“至多有1名女生”(    )A.是对立事件 B.都是必然事件C.不是互斥事件 D.是互斥事件但不是对立事件3.抛掷一颗质地均匀的骰子,有如下随机事件:“向上的点数为”,其中,“向上的点数为偶数”,则下列说法正确的是(    )A. B. C.与互斥 D.与对立4.已知事件A、B、C满足A⊆B,B⊆C,则下列说法不正确的是(    )A.事件A发生一定导致事件C发生B.事件B发生一定导致事件C发生C.事件发生不一定导致事件发生D.事件发生不一定导致事件发生5.已知是两个随机事件,且,则下列选项中一定成立的是(    ).A. B.C. D.考点三 事件的相互独立性【例3-1】(多选)甲乙两人准备买一部手机,购买国产手机的概率分别为,,购买白色手机的概率分别为,,若甲乙两人购买哪款手机互相独立,则(    )A.恰有一人购买国产手机的概率为B.两人都没购买白色手机的概率为C.甲购买国产白色手机的概率为D.甲乙至少一位购买国产白色手机的概率为【例3-2】(多选)从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论正确的是(    )A.2个球都是红球的概率为 B.2个球不都是红球的概率为C.至少有1个红球的概率为 D.2个球中恰有1个红球的概率为【一隅三反】1.某俱乐部通过抽奖活动回馈球迷,奖品为第22届世界杯足球赛吉祥物“拉伊卜”.已知中奖的概率为,则参加抽奖的甲、乙两位球迷都中奖的概率为(    )A. B. C. D.2.近年来,部分高校根据教育部相关文件规定开展基础学科招生改革试点(也称强基计划),假设甲、乙、丙三人通过强基计划的概率分别为,那么三人中恰有两人通过强基计划的概率为(    )A. B. C. D.3.甲、乙两人约定进行乒乓球比赛,采取三局两胜制(在三局比赛中,优先取得两局胜利的一方获胜,无平局),乙每局比赛获胜的概率都为,则最后甲获胜的概率是(    )A. B. C. D.第10章 概率 章末测试(基础)考试时间:120分钟 满分:150分单选题1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则样本点共有(    )A.1个 B.2个 C.3个 D.4个2.某射手的一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1.则此射手在一次射击中不够8环的概率为(    )A.0.4 B.0.3 C.0.6 D.0.93.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(    )A.至少有一个红球与都是黑球 B.至少有一个黑球与都是黑球C.至少有一个黑球与至少有1个红球 D.恰有1个黑球与恰有2个黑球4.袋中有个白球,个黑球,若从中任意摸出个,则至少摸出个黑球的概率是(    )A. B. C. D.5.抛掷一颗质地均匀的骰子,记事件为“向上的点数为1或4”,事件为“向上的点数为奇数”,则下列说法正确的是(    )A.与互斥 B.与对立C. D.6.已知一个古典概型的样本空间和事件和,其中,,,,那么下列事件概率错误的是(    )A. B.C. D.7.下列说法正确的个数有(    )(1)掷一枚质地均匀的的骰子一次,事件M=“出现偶数点”,N=“出现3点或 6 点”.则 和 相互独立;(2)袋中有大小质地相同的 3 个白球和 1 个红球.依次不放回取出 2 个球,则“两球同色”的概率是 ;(3)甲乙两名射击运动员进行射击比赛,甲的中靶率为0.8,乙的中标率为0.9,则“至少一人中靶”的概率为0.98;(4)柜子里有三双不同的鞋,如果从中随机地取出2只,那么“取出地鞋不成双”的概率是 ;A. B.2 C.3 D.48.袋子中有大小、形状、质地完全相同的4个小球,分别写有“风”、“展”、“红”、“旗”四个字,若有放回地从袋子中任意摸出一个小球,直到写有“红”、“旗”的两个球都摸到就停止摸球.利用电脑随机产生1到4之间取整数值的随机数,用1,2,3,4分别代表“风”、“展”、“红”、“旗”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:411   231   324   412   112   443   213   144   331   123114   142   111   344   312   334   223   122   113   133由此可以估计,恰好在第三次就停止摸球的概率为(    )A. B. C. D.多选题9.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.根据表中数据,下列结论正确的是顾客购买乙商品的概率最大 B.顾客同时购买乙和丙的概率约为0.2C.顾客在甲、乙、丙、丁中同时购买3种商品的概率约为0.3 D.顾客仅购买1种商品的概率不大于0.310.从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”11.下列说法正确的为(    )A.在袋子中放有2白2黑大小相同的4个小球,甲乙玩游戏的规则是从中不放回的依次随机摸出两个小球,如两球同色则甲获胜,否则乙获胜,那么甲获胜的概率为.B.做n次随机试验,事件A发生的频率可以估计事件A发生的概率C.必然事件的概率为1.D.在适宜的条件下种下一粒种子,观察它是否发芽,这个试验为古典概型.12.算盘是我国古代一项伟大的发明,是一类重要的计算工具.下图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件“表示的四位数能被3整除”,“表示的四位数能被5整除”,则(    )A. B. C. D.三、填空题13.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为____________.14.1742年6月7日,哥德巴赫在给大数学家欧拉的信中提出:任一大于2的偶数都可写成两个质数的和.这就是著名的“哥德巴赫猜想”,可简记为“1+1”.1966年,我国数学家陈景润证明了“1+2”,获得了该研究的世界最优成果.若在不超过30的所有质数中,随机选取两个不同的数,则两数之和不超过30的概率是________.15.在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+发生的概率为________(表示的对立事件).16.天气预报说,在今后的三天中,每一天下雨的概率均为.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:488  932  812  458  989  431  257  390  024  556734  113  537  569  683  907  966  191  925  271据此估计,这三天中恰有两天下雨的概率近似为__________.四、解答题17.下表是某种油菜籽在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格(精确到小数点后三位);(2)估计该油菜籽发芽的概率是多少?18.(2022·高一单元测试)根据空气质量指数(为整数)的不同,可将空气质量分级如下表:对某城市一年(天)的空气质量进行监测,获得的数据按照区间、、、、、进行分组,得到频率分布直方图如图.(1)求直方图中的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有天的空气质量为良或轻微污染的概率.(结果用分数表示,已知,,,)19.为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛.某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,清你根据尚未完成的频率分布表,解答下列问题:(1)完成频率分布表(直接写出结果),并作出频率分布直方图;(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.20.某餐厅提供自助餐和点餐两种服务,其单人平均消费相近,为了进一步提高菜品及服务质量,餐厅从某日中午就餐的顾客中随机抽取了100人作为样本,得到以下数据表格.(单位:人次)(1)由样本数据分析,三种年龄层次的人群中,哪一类更倾向于选择自助餐?(2)为了和顾客进行深人沟通交流,餐厅经理从点餐不满意的顾客中选取2人进行交流,求两人都是中年人的概率;(3)若你朋友选择到该餐厅就餐,根据表中的数据,你会建议你朋友选择哪种就餐方式?21.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为,乙每轮猜对的概率为·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求(1)“星队”在两轮活动中猜对2个成语的概率;(2) “星队”在两轮活动中猜对3个成语的概率;(3) “星队”在两轮活动至少中猜对1个成语的概率;22.如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数.(3)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.第10章 概率 章末测试(提升)考试时间:120分钟 满分:150分单选题1.一个学习小组有5名同学,其中2名男生,3名女生.从这个小组中任意选出2名同学,则选出的同学中既有男生又有女生的概率为(    )A. B. C. D.2.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为(    ).A. B. C. D.3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为  A. B. C. D.4.抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为(    )A. B. C. D.5.概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.问这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是A.甲48枚,乙48枚 B.甲64枚,乙32枚C.甲72枚,乙24枚 D.甲80枚,乙16枚6.素数分布是数论研究的核心领域之一,含有众多著名的猜想.世纪中叶,法国数学家波利尼亚克提出了“广义孪生素数猜想”:对所有自然数,存在无穷多个素数对.其中当时,称为“孪生素数”,时,称为“表兄弟素数”.在不超过的素数中,任选两个不同的素数、(),令事件为孪生素数},为表兄弟素数},,记事件、、发生的概率分别为、、,则下列关系式成立的是(    )A. B.C. D.7.下列命题中正确的是(    )A.事件发生的概率等于事件发生的频率B.一个质地均匀的骰子掷一次得到3点的概率是,说明这个骰子掷6次一定会出现一次3点C.掷两枚质地均匀的硬币,事件为“一枚正面朝上,一枚反面朝上”,事件为“两枚都是正面朝上”,则D.对于两个事件、,若,则事件与事件互斥8.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是(  )A. B. C. D.二、多选题9.下列说法正确的是(    )A.甲乙两人独立地解题,已知各人能解出的概率分别是0.5,0.25,则题被解出的概率是0.125B.若,是互斥事件,则,C.某校200名教师的职称分布情况如下:高级占比20%,中级占比50%,初级占比30%,现从中抽取50名教师做样本,若采用分层抽样方法,则高级教师应抽取10人D.一位男生和两位女生随机排成一列,则两位女生相邻的概率是10.某社团开展“建党100周年主题活动——学党史知识竞赛”,甲、乙两人能得满分的概率分别为,,两人能否获得满分相互独立,则下列说法错误的是:(    )A.两人均获得满分的概率为 B.两人至少一人获得满分的概率为C.两人恰好只有甲获得满分的概率为 D.两人至多一人获得满分的概率为11.算盘是我国古代一项伟大的发明,是一类重要的计算工具.下图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件“表示的四位数能被3整除”,“表示的四位数能被5整除”,则(    )A. B. C. D.12.下列对各事件发生的概率判断正确的是()A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为C.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是三、填空题13.若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为______14.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件“取出的两球同色”,“取出的2球中至少有一个黄球”,“取出的2球至少有一个白球”,“取出的两球不同色”,“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①与为对立事件;②与是互斥事件;③与是对立事件:④;⑤.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.由1, 2, 3, …,1000这个1000正整数构成集合,先从集合中随机取一个数,取出后把放回集合,然后再从集合中随机取出一个数,则的概率为______.四、解答题17.4月23日是世界读书日,树人中学为了解本校学生课外阅读情况,按性别进行分层,用分层随机抽样的方法从全校学生中抽出一个容量为100的样本,其中男生40名,女生60名.经调查统计,分别得到40名男生一周课外阅读时间(单位:小时)的频数分布表和60名女生一周课外阅读时间(单位:小时)的频率分布直方图:(以各组的区间中点值代表该组的各个值)(1)从一周课外阅读时间为的学生中按比例分配抽取6人,从这6人中任意抽取2人,求恰好一男一女的概率;(2)分别估计男生和女生一周课外阅读时间的平均数,;(3)估计总样本的平均数和方差.参考数据和公式:男生和女生一周课外阅读时间方差的估计值分别为和.,和分别表示男生和女生一周阅读时间的样本,其中.18.某校社团活动深受学生欢迎,每届高一新生都踊跃报名加入.现已知高一某班60名同学中有4名男同学和2名女同学参加摄影社,在这6名同学中,2名同学初中毕业于同一所学校,其余4名同学初中毕业于其他4所不同的学校现从这6名同学中随机选取2名同学代表社团参加校际交流(每名同学被选到的可能性相同).(1)在该班随机选取1名同学,求该同学参加摄影社的概率;(2)求从这6名同学中选出的2名同学代表至少有1名女同学的概率;(3)求从这6名同学中选出的2名同学代表来自不同的初中学校的概率.19.某数学老师对本校2018届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到的频率分布表如下:(1)表中a,b的值及分数在范围内的学生,并估计这次考试全校学生数学成绩及格率(分数在范围为及格);(2)从大于等于110分的学生随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.20.已知关于的二次函数,令集合,,若分别从集合、中随机抽取一个数和,构成数对.(1)列举数对的样本空间;(2)记事件为“二次函数的单调递增区间为”,求事件的概率;(3)记事件为“关于的一元二次方程有4个零点”,求事件的概率.21.从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组,第二组,,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校的800名男生的身高的平均数和中位数;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件,求.22.某市小型机动车驾照“科二”考试中共有项考查项目,分别记作①、②、③、④、⑤.(1)某教练将所带名学员“科二”模拟考试成绩进行统计(如表所示),并计算从恰有项成绩不合格的学员中任意抽出人进行补测(只测不合格的项目),求补测项目种类不超过项的概率.(2)“科二”考试中,学员需缴纳元的报名费,并进行轮测试(按①、②、③、④、⑤的顺序进行);如果某项目不合格,可免费再进行轮补测;若第轮补测中仍有不合格的项目,可选择“是否补考”;若补考则需缴纳元补考费,并获得最多轮补测机会,否则考试结束;每轮补测都按①,②,③,④,⑤的顺序进行,学员在任何轮测试或补测中个项目均合格,方可通过“科二”考试,每人最多只能补考次,某学员每轮测试或补考通过①、②、③、④、⑤各项测试的概率依次为、、、、,且他遇到“是否补考”的决断时会选择补考.求该学员能通过“科二”考试的概率. 顾客人数  商品甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××每批粒数251070130300150020003000发芽的粒数24960116269134717942688发芽的频率级别ⅠⅡⅢ1Ⅲ2Ⅳ1Ⅳ2Ⅴ状况优良轻微污染轻度污染中度污染中度重污染重度污染分组频数频率第1组60.5~70.50.26第2组70.5~80.517第3组80.5~90.5180.36第4组90.5~100.5合计50 1 满意度老年人中年人青年人自助餐点餐自助餐点餐自助餐点餐10分(满意)1212022015分(一般)22634120分(不满意)116232男生一周阅读时间频数分布表小时频数92533分数段(分)合计频数b频率a

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map