终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(2份,原卷版+含答案解析)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(原卷版).docx
    • 解析
      新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(含答案解析).docx
    新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(原卷版)第1页
    新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(含答案解析)第1页
    新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(含答案解析)第2页
    新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(含答案解析)第3页
    还剩1页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(2份,原卷版+含答案解析)

    展开

    这是一份新高考数学一轮复习巩固练习解三角形、数列冲刺练(3)(2份,原卷版+含答案解析),文件包含新高考数学一轮复习巩固练习解三角形数列冲刺练3原卷版docx、新高考数学一轮复习巩固练习解三角形数列冲刺练3含答案解析docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
    在△ABC中,角A,B,C的对边分别为a,b,c,______.
    (1)求角A; (2)若b=2,c=4,求△ABC的BC边上的中线AD的长.
    2.在△ABC中,角A,B,C的对边分别为a,b,c,且b=2acsAcsC+2ccs2A.
    (1)求角A; (2)若a=4,求c−2b的取值范围.
    3.如图在平面四边形ABCD中,AC=7,AB=3,∠DAC=∠BAC,sin∠BAC=2114.
    (1)求边BC; (2)若∠CDA=2π3,求四边形ABCD的面积.
    4.在等差数列{an}中,已知 a1+a2+a3=18且a4+a5+a6=54.
    (1)求{an}的通项公式; (2)设bn=4an⋅an+1,求数列{bn}的前n项和Sn.
    5.已知数列an,且a1=2,an+1=2an−1,n∈N∗.
    (1)求an的通项公式; (2)设bn=nan−1,若bn的前n项和为Tn,求Tn.
    6.已知数列an的前n项和为Sn,且满足a1=1,2Snn=an+1−1.
    (1)求数列an的通项公式; (2)若数列Cn=2n,n为奇数,2n+3,n为偶数,,求数列Cn的前2n项和T2n.
    参考答案
    1.【详解】(1)解:(1)若选①,即cs2A=cs(B+C),得2cs2A−1=−csA,
    ∴2cs2A+csA−1=0,∴csA=12或csA=−1(舍去),
    ∵A∈(0,π),∴A=π3;
    若选②:asinC=3ccsA,
    由正弦定理,得sinAsinC=3sinCcsA,
    ∵A,C∈(0,π),∴sinC>0,则sinA=3csA,∴tanA=3,∴A=π3;
    (2)解:AD是△ABC的BC边上的中线,∴ AD=12(AB+AC),
    ∴ AD2=14(AB+AC)2=14(AB2+2AB⋅AC+AC2)
    =14AB2+2AB⋅AC+AC2
    =14(c2+2c⋅bcsπ3+b2),
    =14(42+2×4×2×csπ3+22)=7,
    ∴AD=7.
    2.【详解】(1)解:因为b=2acsAcsC+2ccs2A,
    由正弦定理得sinB=2sinAcsAcsC+2sinCcs2A,
    即sinB=2csAsinAcsC+sinCcsA,
    即sinB=2csAsinA+C,
    因为A+B+C=π,所以A+C=π−B,
    所以sinB=2csAsinB.
    因为B∈0,π,所以sinB≠0,
    所以csA=12,因为A∈0,π,所以A=π3.
    (2)解:由正弦定理得asinA=833,
    所以c−2b=833sinC−2sinB=833sinπ−π3−B−2sinB
    =83332csB−32sinB=8csBcsπ3−csBsinπ3,
    所以c−2b=8csB+π3.
    因为B∈0,2π3,所以B+π3∈π3,π,所以csB+π3∈−1,12,
    所以c−2b∈−8,4.
    3.【详解】(1)因为sin∠BAC=2114,∠BAC为锐角,
    所以cs∠BAC=1−21142=5714.
    因为AC=7,AB=3,在△ABC中,
    由余弦定理得BC2=AC2+AB2−2AC⋅AB⋅cs∠BAC,
    即BC2=7+9−2×7×3×5714=1,得BC=1.
    (2)在△ADC中,由正弦定理得CDsin∠DAC=ACsin∠ADC,
    即CD2114=732,所以CD=1.
    在△ADC中,由余弦定理得cs∠ADC=AD2+CD2−AC22AD⋅CD,
    即−12=AD2+1−72AD,解得AD=2.
    因为S△ABC=12×7×3×2114=334,S△ACD=12×1×2×sin2π3=32,
    所以SABCD=S△ABC+S△ACD=334+32=534.
    4.【详解】(1)解:由题意,设等差数列{an}的公差为d,则3a1+3d=18,3a1+12d=54, 解得a1=2,d=4
    ∴ an=2+4(n−1)=4n−2,n∈N∗;
    (2)解:∵bn=4an⋅an+1=44n−24n+2=12n−12n+1=1212n−1−12n+1,∴Sn=121−13+13−15+15−17+⋯+12n−1−12n+1=121−12n+1=n2n+1.
    5.【详解】(1)因为an+1=2an−1,所以an+1−1=2an−2=2an−1,
    其中a1−1=2−1=1,故an−1是首项为1,公比为2的等比数列,
    故an−1=2n−1,所以an=2n−1+1;
    (2)bn=nan−1=n⋅2n−1,
    所以Tn=20+2×2+3×22+⋯+n⋅2n−1①,
    故2Tn=2+2×22+3×23+⋯+n⋅2n②,
    两式相减得,−Tn=1+2+22+⋯+2n−1−n⋅2n=1−2n1−2−n⋅2n=1−n⋅2n−1,
    故Tn=n−12n+1.
    6.【详解】(1)因为2Snn=an+1−1,所以2Sn=nan+1−n,①
    当n≥2时,2Sn−1=(n−1)an−(n−1),②
    ①-②得:2an=nan+1−(n−1)an−1,即nan+1−(n+1)an=1,
    所以an+1n+1−ann=1n(n+1)=1n−1n+1,
    所以ann−a22=12−1n,由a2=3,可得an=2n−1,
    当n=1时,a1=1,符合上式,
    所以an=2n−1.
    (2)由题意得,Cn=2n,n为奇数,2n+3,n为偶数,
    则T2n=C1+C3+⋯+C2n−1+C2+C4+⋯+C2n
    =21−4n1−4+n(7+4n+3)2=234n−1+2n2+5n,
    所以T2n=234n−1+2n2+5n.

    相关试卷

    新高考数学一轮复习巩固练习解三角形、数列综合练(7)(2份,原卷版+含答案解析):

    这是一份新高考数学一轮复习巩固练习解三角形、数列综合练(7)(2份,原卷版+含答案解析),文件包含新高考数学一轮复习巩固练习解三角形数列综合练7原卷版docx、新高考数学一轮复习巩固练习解三角形数列综合练7含答案解析docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    新高考数学一轮复习巩固练习解三角形、数列冲刺练(6)(2份,原卷版+含答案解析):

    这是一份新高考数学一轮复习巩固练习解三角形、数列冲刺练(6)(2份,原卷版+含答案解析),文件包含新高考数学一轮复习巩固练习解三角形数列冲刺练6原卷版docx、新高考数学一轮复习巩固练习解三角形数列冲刺练6含答案解析docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    新高考数学一轮复习巩固练习解三角形、数列冲刺练(5)(2份,原卷版+含答案解析):

    这是一份新高考数学一轮复习巩固练习解三角形、数列冲刺练(5)(2份,原卷版+含答案解析),文件包含新高考数学一轮复习巩固练习解三角形数列冲刺练5原卷版docx、新高考数学一轮复习巩固练习解三角形数列冲刺练5含答案解析docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map