所属成套资源:新高考数学一轮复习精品讲练测 (2份,原卷版+解析版)
新高考数学一轮复习精品讲练测第4章第04讲 三角函数的伸缩平移变换(2份,原卷版+解析版)
展开
这是一份新高考数学一轮复习精品讲练测第4章第04讲 三角函数的伸缩平移变换(2份,原卷版+解析版),文件包含新高考数学一轮复习精品讲练测第4章第04讲三角函数的伸缩平移变换教师版doc、新高考数学一轮复习精品讲练测第4章第04讲三角函数的伸缩平移变换学生版doc等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
知识讲解
三角函数的伸缩平移变换
伸缩变换(,是伸缩量)
振幅,决定函数的值域,值域为;
若↗,纵坐标伸长;若↘,纵坐标缩短;与纵坐标的伸缩变换成正比
决定函数的周期,
若↗,↘,横坐标缩短;若↘,↗,横坐标伸长;与横坐标的伸缩变换成反比
平移变换(,是平移量)
平移法则:左右,上下
伸缩平移变换
①先平移后伸缩
向左平移个单位→,横坐标变为原来的,纵坐标变为原来的倍→
②先伸缩后平移
横坐标变为原来的,纵坐标变为原来的倍→,向左平移个单位→
三角函数图象的变换
常用结论
(1)对称与周期的关系
正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.
(2)与三角函数的奇偶性相关的结论
若y=Asin(ωx+φ)为偶函数,则有φ=kπ+eq \f(π,2)(k∈Z);若为奇函数,则有φ=kπ(k∈Z).
若y=Acs(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+eq \f(π,2)(k∈Z).
若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).
考点一、同名三角函数伸缩平移变换的基本应用
1.(北京·高考真题)将函数的图象向右平移个单位长度得到图象,则函数的解析式是( )
A.B.
C.D.
2.(2022·浙江·统考高考真题)为了得到函数的图象,只要把函数图象上所有的点( )
A.向左平移个单位长度B.向右平移个单位长度
C.向左平移个单位长度D.向右平移个单位长度
3.(江苏·高考真题)为了得到函数,的图象,只需把函数,的图象上所有的点( )
A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)
B.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)
C.向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)
D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)
1.(2021·全国·统考高考真题)把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
A.B.
C.D.
2.(四川·高考真题)将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是
A.B.
C.D.
3.(天津·高考真题)把函数的图像上所有的点向左平行移动个单位长度,再把所得图像上所有点的横坐标缩短到原来的(纵坐标不变),得到的图像所表示的函数是
A.B.
C.D.
考点二、异名三角函数伸缩平移变换的基本应用
1.(全国·高考真题)为得到函数的图像,只需将函数的图像( )
A.向左平移个长度单位B.向右平移个长度单位
C.向左平移个长度单位D.向右平移个长度单位
2.(天津·高考真题)要得到函数的图象,只需将函数的图象上所有的点的
A.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度
C.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度
D.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度
3.(全国·高考真题)为了得到函数的图象,可以将函数的图象
A.向右平移个单位长度B.向右平移个单位长度
C.向左平移个单位长度D.向左平移个单位长度
1.(山东·高考真题)要得到函数的图像,只需将函数的图像( )
A.向右平移个单位B.向右平移个单位
C.向左平移个单位D.向左平移个单位
2.(全国·高考真题)已知曲线C1:y=cs x,C2:y=sin (2x+),则下面结论正确的是
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
考点三、三角函数伸缩平移变换的综合应用
1.(2022·全国·统考高考真题)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )
A.B.C.D.
2.(2022·天津·统考高考真题)已知,关于该函数有下列四个说法:
①的最小正周期为;
②在上单调递增;
③当时,的取值范围为;
④的图象可由的图象向左平移个单位长度得到.
以上四个说法中,正确的个数为( )
A.B.C.D.
3.(山东·高考真题)将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为
A.B.C.D.
4.(2023·浙江·校联考二模)函数的图象向左平移个单位长度后对应的函数是奇函数,函数.若关于x的方程在内有两个不同的解α,β,则的值为( )
A.B.C.D.
5.(2023·广东汕头·金山中学校考三模)(多选)已知函数,且所有的正零点构成一个公差为的等差数列,把函数的图象沿轴向左平移个单位,横坐标伸长到原来的2倍得到函数的图象,则下列关于函数的结论正确的是( )
A.函数是偶函数
B.的图象关于点对称
C.在上是增函数
D.当时,函数的值域是
6.(2023·福建漳州·统考模拟预测)(多选)把函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向左平移个单位长度,得到函数的图象,则( )
A.在上单调递减
B.在上有2个零点
C.的图象关于直线对称
D.在上的值域为
1.(天津·统考高考真题)已知函数.给出下列结论:
①的最小正周期为;
②是的最大值;
③把函数的图象上所有点向左平移个单位长度,可得到函数的图象.
其中所有正确结论的序号是( )
A.①B.①③C.②③D.①②③
2.(2023·江苏南通·统考模拟预测)将函数的图象上的点横坐标变为原来的(纵坐标变)得到函数的图象,若存在,使得对任意恒成立,则( )
A.B.C.D.
3.(2023·山东菏泽·山东省鄄城县第一中学校考三模)(多选)已知函数,把函数的图象向右平移个单位长度,得到函数的图象,若时,方程有实根,则实数的取值可以为( )
A.B.C.D.
【基础过关】
一、单选题
1.(2023·安徽蚌埠·统考三模)已知函数,则要得到函数的图象,只需将函数的图象( )
A.向左平移个单位B.向右平移个单位
C.向左平移个单位D.向右平移个单位
2.(2023·全国·模拟预测)将函数的图象上各点向右平移个单位长度得函数的图象,则的单调递增区间为( )
A.B.
C.D.
3.(2023·山东青岛·统考三模)将函数图象向左平移后,得到的图象,若函数在上单调递减,则的取值范围为( )
A.B.C.D.
4.(2023·甘肃定西·统考模拟预测)将函数的图像向右平移个单位长度,可得函数的图像,则的一个对称中心为( )
A.B.C.D.
5.(2023·甘肃定西·统考模拟预测)将函数的图象向右平移个单位长度,可得函数的图象,则的最小正值为( )
A.B.C.D.
6.(2023·辽宁鞍山·统考模拟预测)函数的部分图象如图所示,将函数的图象向左平移1个单位长度后得到函数的图象,则( )
A.B.C.D.1
7.(2023·重庆·统考三模)将函数的图象向右平移个单位得到函数的图象,则“”是“函数为偶函数”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
二、多选题
8.(2023·江苏扬州·扬州中学校考模拟预测)已知函数的部分图象如图所示,则下列结论中正确的是( )
A.
B.
C.点是的一个对称中心
D.函数的图象向左平移个单位得到的图象关于轴对称
9.(2023·广东广州·统考三模)已知函数,则下列说法正确的是( )
A.
B.函数的最小正周期为
C.函数的图象的对称轴方程为
D.函数的图象可由的图象向左平移个单位长度得到
10.(2023·湖南益阳·安化县第二中学校考三模)将函数的图象向右平移个单位长度得到函数的图象,则( )
A.
B.是图象的一个对称中心
C.当时,取得最大值
D.函数在区间上单调递增
【能力提升】
一、单选题
1.(2023·山东泰安·统考模拟预测)已知函数的部分图象如图,则( )
A.
B.
C.点为曲线的一个对称中心
D.将曲线向右平移个单位长度得到曲线
2.(2023·安徽·合肥一中校联考模拟预测)已知曲线,则下面结论正确的是( )
A.把C1上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的,纵坐标不变,再把得到的曲线向左平移个单位长度C2
D.把C1上各点的横坐标缩短到原来的,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
二、多选题
3.(2023·湖南长沙·长沙市实验中学校考三模)已知函数(,),若函数的部分图象如图所示,则关于函数下列结论正确的是( )
A.函数的图象关于直线对称
B.函数的图象关于点对称
C.函数在区间上单调递增
D.函数的图象可由函数的图象向左平移个单位长度得到
4.(2023·广东佛山·统考模拟预测)已知函数的图象关于对称,则( )
A.的最大值为2
B.是偶函数
C.在上单调递增
D.把的图象向左平移个单位长度,得到的图象关于点对称
5.(2023·安徽六安·安徽省舒城中学校考模拟预测)定义在上的函数满足在区间内恰有两个零点和一个极值点,则下列说法不正确的是( )
A.的最小正周期为
B.将的图象向右平移个单位长度后关于原点对称
C.图象的一个对称中心为
D.在区间上单调递增
6.(2023·广东佛山·校考模拟预测)已知函数的初相为,则下列结论正确的是( )
A.的图象关于直线对称
B.函数的一个单调递减区间为
C.若把函数的图象向右平移个单位长度得到函数的图象,则为偶函数
D.若函数在区间上的值域为
7.(2023·辽宁沈阳·沈阳二中校考模拟预测)函数的图像关于点中心对称,且在区间内恰有三个极值点,则( )
A.在区间上单调递增
B.在区间内有3个零点
C.直线是曲线的对称轴
D.将图象向左平移个单位,所得图象对应的函数为奇函数
8.(2023·湖南衡阳·衡阳市八中校考模拟预测)已知函数,其图象相邻对称轴间的距离为,点是其中的一个对称中心,则下列结论正确的是( )
A.函数的最小正周期为
B.函数图象的一条对称轴方程是
C.函数在区间上单调递增
D.将函数图象上所有点横坐标伸长原来的2倍,纵坐标缩短原来的一半,再把得到的图象向左平移个单位长度,可得到正弦函数的图象
9.(2023·广东广州·广州市从化区从化中学校考模拟预测)已知是的导函数( )
A.是由图象上的点横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移得到的
B.是由图象上的点横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移得到的
C.的对称中心坐标是
D.是的一条切线方程.
三、填空题
10.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知函数,把的图象向右平移个单位长度,得到函数的图象,则 .
【真题感知】
1.(全国·高考真题)为了得到函数的图像,只需把函数的图像
A.向左平移个长度单位B.向右平移个长度单位
C.向左平移个长度单位D.向右平移个长度单位
2.(全国·高考真题)设函数,将的图象向右平移个单位长度后,所得的图象与原图象重合,则的最小值等于
A.B.C.D.
3.(天津·高考真题)已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则
A.B.C.D.
4.(全国·高考真题)若将函数的图像向右平移个单位长度后,与函数的图像重合,则的最小值为
A.B.C.D.
5.(2023·全国·统考高考真题)函数的图象由函数的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )
A.1B.2C.3D.4
6.(2020·江苏·统考高考真题)将函数y=的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是 .
7.(安徽·高考真题)若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小正值是________.
8.(全国·高考真题)函数的图象向右平移个单位后,与函数的图象重合,则= .
相关试卷
这是一份新高考数学一轮复习精品讲练测第6章第04讲 数列求和综合(2份,原卷版+解析版),文件包含新高考数学一轮复习精品讲练测第6章第04讲数列求和综合附加错位相减法万能公式教师版doc、新高考数学一轮复习精品讲练测第6章第04讲数列求和综合附加错位相减法万能公式学生版doc等2份试卷配套教学资源,其中试卷共96页, 欢迎下载使用。
这是一份新高考数学一轮复习精品讲练测第3章第04讲 利用导数证明不等式(2份,原卷版+解析版),文件包含新高考数学一轮复习精品讲练测第3章第04讲利用导数证明不等式教师版doc、新高考数学一轮复习精品讲练测第3章第04讲利用导数证明不等式学生版doc等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。
这是一份新高考数学一轮复习精品讲练测第2章第04讲 对数与对数函数(2份,原卷版+解析版),文件包含新高考数学一轮复习精品讲练测第2章第04讲对数与对数函数教师版doc、新高考数学一轮复习精品讲练测第2章第04讲对数与对数函数学生版doc等2份试卷配套教学资源,其中试卷共0页, 欢迎下载使用。