10、复数(含解析)【高考数学】一轮复习:易混易错专项复习(练习)
展开
这是一份10、复数(含解析)【高考数学】一轮复习:易混易错专项复习(练习),共5页。
1.复数的有关概念
(1)复数相等:且.
(2)共轭复数:与共轭且.
(3)复数的模
①概念:复数对应的向量的模叫做z的模,记作或,即.
②性质:若为复数,则.
2.复数的几何意义
(1)复数复平面内的点.
(2)复数平面向量.
3. 复数的加、减、乘、除运算法则
设,则
(1)加法:;
(2)减法:;
(3)乘法:;
(4)除法:.
4.复数加法的运算律
复数的加法满足交换律、结合律,即对任何,有,.
5.复数加、减法的几何意义
(1)复数加法的几何意义
若复数对应的向量不共线,则复数是以为两邻边的平行四边形的对角线所对应的复数.
(2)复数减法的几何意义
复数是所对应的复数.
【易错题练习】
1.若,则( )
A.B.C.D.
2.复数的共轭复数所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.设,则( )
A.10B.9C.D.
4.若,则( )
A.10iB.2iC.10D.2
5.已知复数z满足,则( )
A.1B.C.2D.
6.已知复数z满足,则z在复平面内对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
7.(多选)下列关于复数的说法中正确的有( )
A.复数z的虚部为
B.复数z的共轭复数是
C.复数z的模是4
D.复数z对应的点在第四象限
8.(多选)下列关于复数的运算正确的是( )
A.B.
C.D.若虚数z满足,则
9.已知复数z满足,则__________.
10.在复平面内,若复数z对应的点的坐标为,则__________.
答案以及解析
1.答案:C
解析:解法一:因为,所以,即,即,所以,故选C.
解法二:因为,所以,即,即,所以,故选C.
2.答案:B
解析:由题意,所以复数的共轭复数为,所以其共轭复数在复平面内对应的点为,在第二象限.故选B.
3.答案:A
解析:方法一:,所以.故选A.
方法二:,所.故选A.
4.答案:A
解析:因为,所以,所以,故选A.
5.答案:B
解析:由题意得,,所以,所以.故选B.
6.答案:C
解析:由题意得,所以在复平面内对应的点为,位于第三象限.故选C.
7.答案:BD
解析:对于A,由虚部定义知z的虚部为,A错误;
对于B,由共轭复数定义知,B正确;
对于C,,C错误;
对于D,z对应的点为,位于第四象限,D正确.故选BD.
8.答案:ABD
解析:设,,,则,.同理,故A,B正确;,故C错误;,z为虚数,,故D正确,故选ABD.
9.答案:
解析:由已知,得,因此.
10.答案:
解析:由题意得,
所以
.
故答案为:
相关试卷
这是一份9、计数原理与概率统计(含解析)【高考数学】一轮复习:易混易错专项复习(练习),共16页。
这是一份8、平面解析几何(含解析)【高考数学】一轮复习:易混易错专项复习(练习),共13页。
这是一份6、不等式(含解析)【高考数学】一轮复习:易混易错专项复习(练习),共6页。