人教版数学九年级下册单元复习第二十七章 相似(章末测试)(2份,原卷版+解析版)
展开
这是一份人教版数学九年级下册单元复习第二十七章 相似(章末测试)(2份,原卷版+解析版),文件包含人教版数学九年级下册单元复习第二十七章相似章末测试原卷版doc、人教版数学九年级下册单元复习第二十七章相似章末测试解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
第二十七章 相似一、单选题:1.若,且,,,则EF的长度为( ).A. B. C. D.2.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ADE与△ABC相似的是( )A.B=∠D B.∠C=∠AED C.= D.=3.如图,把绕点旋转得到,当点刚好落在上时,连接,设、相交于点,则图中相似三角形的对数是( ).A.3对 B.4对 C.5对 D.6对4.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为( )A.6 B.8 C.10 D.125.为了加强视力保护意识,小明在书房里挂了一张视力表.由于书房空间狭小,他想根据测试距离为的大视力表制作一个测试距离为小视力表.如图,如果大视力表中“”的高度是,那么小视力表中相应“”的高度是( )A. B. C. D.6.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ADC的值为( )A.1:16 B.1:18 C.1:20 D.1:247.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是( )A.(﹣3,﹣1) B.(﹣1,2)C.(﹣9,1)或(9,﹣1) D.(﹣3,﹣1)或(3,1)8.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( ) A.18 B. C. D.9.如图,AB是半圆O的直径,点C是的中点,点D是的中点,连接AC,BD交于点E,则等于( )A. B. C.1- D.10.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有( )①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④ B.①②③ C.①③④ D.①②二、填空题:11.已知,且面积比为9∶4,则与的对应角平分线之比为____.12.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为.点A、B、E在x轴上,若正方形BEFG的边长为6,则C点坐标为 ________.13.如图,平分,,,当______时,.14.如图所示,把沿平移到的位置,它们重合部分的面积是面积的,若,则此三角形移动的距离是________.15.如图,与中,,,,,的长为______.16.如图,平行四边形中,是边上的点,交于点,如果,那么________.17.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.18.如图,D是BC上一点,E是AB上一点,AD、CE交于点P,且AE∶EB=3∶2,CP∶CE=5∶6,那么DB∶CD=__________.19.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2)延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x 轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为_____.20.如图,在中,,,点是的中点,连结,过点作,分别交、于点、,与过点且垂直于的直线相交于点,连结.给出以下五个结论:①;②;③点是的中点;④;⑤.其中正确结论的序号是________.三、解答题:21.根据图中所注的条件,判断图中两个三角形是否相似,并求出x和y的值.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)四边形AA2C2C的面积是 平方单位.23.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:.24.如图,明珠大厦的顶部建有一直径为的“明珠”,它的西面处有一高的小型建筑,人站在的西面附近无法看到“明珠”外貌,如果向西走到点处,可以开始看到“明珠”的顶端;若想看到“明珠”的全貌,必须向西至少再走,求大厦主体建筑的高度.(不含顶部“明珠”部分的高度)25.如图,已知为的直径,是的切线,连接交于点取的中点,连接交于点,过点作于点.(1)求证:;(2)若,,求和的长.26.如图,在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿CB向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?27.如图1,在平面直角坐标系中,矩形OABC的顶点O为原点,AB=8,BC=10,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在边上的点D处, (1)求AE的长;(2)如图2,将∠CDE绕着点D逆时针旋转一定的角度,使角的一边DE刚好经过点B,另一边与y轴交于点F,求点F的坐标;(3)在(2)的条件下,在平面内是否存在一点P,使以点C、D、F、P为顶点的四边形是平行四边形.若存在,直接写出点P的坐标;若不存在,请通过计算说明理由.