年终活动
搜索
    上传资料 赚现金

    新高考数学一轮复习考点精讲+题型精练专题01 集合(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      新高考数学一轮复习考点精讲+题型精练专题01 集合(原卷版).doc
    • 解析
      新高考数学一轮复习考点精讲+题型精练专题01 集合(解析版).doc
    新高考数学一轮复习考点精讲+题型精练专题01 集合(原卷版)第1页
    新高考数学一轮复习考点精讲+题型精练专题01 集合(原卷版)第2页
    新高考数学一轮复习考点精讲+题型精练专题01 集合(原卷版)第3页
    新高考数学一轮复习考点精讲+题型精练专题01 集合(解析版)第1页
    新高考数学一轮复习考点精讲+题型精练专题01 集合(解析版)第2页
    新高考数学一轮复习考点精讲+题型精练专题01 集合(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习考点精讲+题型精练专题01 集合(2份,原卷版+解析版)

    展开

    这是一份新高考数学一轮复习考点精讲+题型精练专题01 集合(2份,原卷版+解析版),文件包含新高考数学一轮复习考点精讲+题型精练专题01集合原卷版doc、新高考数学一轮复习考点精讲+题型精练专题01集合解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
    专题01 集合
    →➊考点精析←
    一、集合的基本概念
    1.元素与集合的关系:.
    2.集合中元素的特征:
    3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作.
    4.常用数集及其记法:
    注意:实数集不能表示为{x|x为所有实数}或{},因为“{ }”包含“所有”“全体”的含义.
    5.集合的表示方法:自然语言、列举法、描述法、图示法.
    解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.
    特别提醒:含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.
    二、集合间的基本关系
    必记结论:
    若集合A中含有n个元素,则有个子集,有个非空子集,有个真子集,有个非空真子集.
    (2)子集关系的传递性,即.
    注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.
    (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.
    (2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.
    三、集合的基本运算
    1.集合的基本运算
    2、集合的运算性质
    (1)A∩A=A,A∩∅=∅,A∩B=B∩A。
    (2)A∪A=A,A∪∅=A,A∪B=B∪A。A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB
    (3)A∩(∁UA)=∅,A∪(∁UA)=U,∁U(∁UA)=A。
    (4)∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB)。
    (1)对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.
    (2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,能简化运算.
    解决集合新定义问题的关键是
    (1)准确转化:解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.
    (2)方法选取:对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.
    (3)从新定义出发,结合集合的性质求解,提升逻辑推理核心素养.
    →➋真题精讲←
    1.(2023全国理科甲卷) 设全集,集合,( )
    A. B.
    C. D.
    2. (2023全国文科甲卷)设全集,集合,则( )
    A. B. C. D.
    3. (2023全国理科乙卷)设集合,集合,,则( )
    A. B.
    C. D.
    4. (2023全国文科乙卷)设全集,集合,则( )
    A. B. C. D.
    5.(2023高考北京卷) 已知集合,则( )
    A. B.
    C. D.
    6. (2023高考数学天津卷)已知集合,则( )
    A. B. C. D.
    7.(2023全国课标Ⅰ卷) 已知集合,,则( )
    A. B. C. D. 2
    8. (2023全国课标Ⅱ卷)设集合,,若,则( ).
    A. 2 B. 1 C. D.
    →➌模拟精练←
    1.(2023·江苏常州·江苏省前黄高级中学校考二模)已集合,若,则实数a的取值集合是( )
    A.B.C.D.
    2.(2023·山东济南·统考三模)已知全集,则图中阴影部分代表的集合为( )
    A.B.C.D.
    3.(2023·江苏南京·统考二模)集合的子集个数为( )
    A.2B.4C.8D.16
    4.(2023·山东济宁·嘉祥县第一中学统考三模)若集合,,则集合中的元素个数为( )
    A.0B.1C.2D.3
    5.(2023·江苏常州·校考二模)已知集合和,则( )
    A.B.
    C.D.
    6.(2023·山东德州·三模)已知集合,,若,则的取值范围是( )
    A.B.C.D.
    7.(2023·山东聊城·统考三模)已知集合,,若对于,都有,则的取值范围为( )
    A.B.C.D.
    8.(2023·山东淄博·山东省淄博实验中学校考三模)已知集合,,则为( )
    A.B.或
    C.或D.或
    →➍专题训练←
    一、元素的意义
    1.已知集合,,则集合的子集的个数为( )
    A.2B.4C.8D.16
    2.已知集合,,则中元素的个数为( )
    A.3B.2C.1D.0
    3.若集合M={(x,y)|x+y=0},N={(x,y)|x2+y2=0,x∈R,y∈R},则有( )
    A.M∪N=MB.M∪N=NC.M∩N=MD.M∩N=∅
    集合的互异性
    1.已知集合,,若,则等于( )
    A.1或2B.或C.2D.1
    2.其,则由的值构成的集合是( )
    A.B.C.D.
    子集为空集与取等
    1.已知集合,,若,则实数的取值范围是( )
    A.B.C.D.
    2.已知集合,,若,则实数的取值集合为( )
    A.B.C.D.
    3.若集合,,若,则实数的取值范围是( )
    A.B.
    C.D.
    集合的新定义问题
    1、.若x∈A,则eq \f(1,x)∈A,就称A是伙伴关系集合,集合M=eq \b\lc\{\rc\}(\a\vs4\al\c1(-1,0,\f(1,2),2,3))的所有非空子集中具有伙伴关系的集合的个数是( )
    A.1 B.3
    C.7 D.31
    2.给定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出如下三个结论:
    ①集合A={-4,-2,0,2,4}为闭集合;
    ②集合A={n|n=3k,k∈Z}为闭集合;
    ③若集合A1,A2为闭集合,则A1∪A2为闭集合.
    其中正确结论的序号是________.
    五、综合训练
    1.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=
    A.–4 B.–2 C.2 D.4
    2.已知集合,,则中元素的个数为
    A.2B.3
    C.4D.6
    3.已知集合,,若,则
    A.或B.或
    C.或D.或
    4.设集合A={x|1≤x≤3},B={x|2

    相关试卷

    新高考数学一轮复习考点精讲精练 第01讲 集合(2份,原卷版+解析版):

    这是一份新高考数学一轮复习考点精讲精练 第01讲 集合(2份,原卷版+解析版),文件包含新高考数学一轮复习考点精讲精练第01讲集合原卷版doc、新高考数学一轮复习考点精讲精练第01讲集合解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    高考数学一轮复习高频考点精讲精练(新高考专用)第01讲集合(高频精讲)(原卷版+解析):

    这是一份高考数学一轮复习高频考点精讲精练(新高考专用)第01讲集合(高频精讲)(原卷版+解析),共55页。试卷主要包含了元素与集合,集合间的基本关系,集合的基本运算,集合的运算性质,高频考点结论等内容,欢迎下载使用。

    高考数学一轮复习高频考点精讲精练(新高考专用)第01讲集合(分层精练)(原卷版+解析):

    这是一份高考数学一轮复习高频考点精讲精练(新高考专用)第01讲集合(分层精练)(原卷版+解析),共26页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map