所属成套资源:新高考数学一轮复习考点精讲+题型精练(2份,原卷版+解析版)
新高考数学一轮复习考点精讲+题型精练专题30 抛物线的标准方程及几何性质(2份,原卷版+解析版)
展开
这是一份新高考数学一轮复习考点精讲+题型精练专题30 抛物线的标准方程及几何性质(2份,原卷版+解析版),文件包含新高考数学一轮复习考点精讲+题型精练专题30抛物线的标准方程及几何性质原卷版doc、新高考数学一轮复习考点精讲+题型精练专题30抛物线的标准方程及几何性质解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
专题30 抛物线的标准方程及几何性质
№考向解读
➊考点精析
➋真题精讲
➌模拟精练
➍专题训练
(新高考)
高考数学一轮复习
专题30 抛物线的标准方程及几何性质
→➊考点精析←
一、 抛物线的定义及标准方程
1.满足以下三个条件的点的轨迹叫作抛物线:
(1)在平面内;
(2)动点到定点F的距离与到定直线l的距离相等;
(3)定点不在定直线上.
2.抛物线的标准方程
二、 椭圆的几何性质
→➋真题精讲←
1. (2023全国Ⅱ卷10)设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).
A. B.
C. 以MN为直径的圆与l相切D. 为等腰三角形
【答案】AC
【解析】
【分析】先求得焦点坐标,从而求得,根据弦长公式求得,根据圆与等腰三角形的知识确定正确答案.
【详解】A选项:直线过点,所以抛物线的焦点,
所以,则A选项正确,且抛物线的方程为.
B选项:设,
由消去并化简得,
解得,所以,B选项错误.
C选项:设的中点为,到直线的距离分别为,
因为,
即到直线的距离等于的一半,所以以为直径的圆与直线相切,C选项正确.
D选项:直线,即,
到直线的距离为,
所以三角形的面积为,
由上述分析可知,
所以,
所以三角形不是等腰三角形,D选项错误.
故选:AC.
2. (2023北京卷6)已知抛物线的焦点为,点在上.若到直线的距离为5,则( )
A. 7B. 6C. 5D. 4
【答案】D
【解析】
【分析】利用抛物线的定义求解即可.
【详解】因为抛物线的焦点,准线方程为,点在上,
所以到准线的距离为,
又到直线的距离为,
所以,故.
故选:D.
3. (2023全国乙卷13)已知点在抛物线C:上,则A到C的准线的距离为______.
【答案】
【解析】
【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为,最后利用点的坐标和准线方程计算点到的准线的距离即可.
【详解】由题意可得:,则,抛物线的方程为,
准线方程为,点到的准线的距离为.
故答案为:.
4.(2023全国甲卷20) 已知直线与抛物线交于两点,且.
(1)求;
(2)设F为C的焦点,M,N为C上两点,,求面积的最小值.
【答案】(1)
(2)
【解析】
【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;
(2)设直线:,利用,找到的关系,以及的面积表达式,再结合函数的性质即可求出其最小值.
【小问1详解】
设,
由可得,,所以,
所以,
即,因为,解得:.
【小问2详解】
因为,显然直线的斜率不可能为零,
设直线:,,
由可得,,所以,,
,
因为,所以,
即,
亦即,
将代入得,
,,
所以,且,解得或.
设点到直线的距离为,所以,
,
所以的面积,
而或,所以,
当时,的面积.
【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.
5. (2023全国Ⅰ卷22)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;
(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
【答案】(1)
(2)见解析
【解析】
【分析】(1)设,根据题意列出方程,化简即可;
(2)法一:设矩形的三个顶点,且,分别令,,且,利用放缩法得,设函数,利用导数求出其最小值,则得的最小值,再排除边界值即可.
法二:设直线的方程为,将其与抛物线方程联立,再利用弦长公式和放缩法得,利用换元法和求导即可求出周长最值,再排除边界值即可.
法三:利用平移坐标系法,再设点,利用三角换元再对角度分类讨论,结合基本不等式即可证明.
【小问1详解】
设,则,两边同平方化简得,
故.
【小问2详解】
法一:设矩形的三个顶点在上,且,易知矩形四条边所在直线的斜率均存在,且不为0,
则,令,
同理令,且,则,
设矩形周长为,由对称性不妨设,,
则.,易知
则令,
令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
故,即.
当时,,且,即时等号成立,矛盾,故,
得证.
法二:不妨设在上,且,
依题意可设,易知直线,的斜率均存在且不为0,
则设,的斜率分别为和,由对称性,不妨设,
直线的方程为,
则联立得,
,则
则,
同理,
令,则,设,
则,令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
,
但,此处取等条件为,与最终取等时不一致,故.
法三:为了计算方便,我们将抛物线向下移动个单位得抛物线,
矩形变换为矩形,则问题等价于矩形的周长大于.
设 , 根据对称性不妨设 .
则 , 由于 , 则 .
由于 , 且 介于 之间,
则 . 令 ,
,则,从而
故
①当时,
②当 时,由于,从而,
从而又,
故,由此
,
当且仅当时等号成立,故,故矩形周长大于.
.
【点睛】关键点睛:本题的第二个的关键是通过放缩得,同时为了简便运算,对右边的式子平方后再设新函数求导,最后再排除边界值即可.
→➌模拟精练←
1.(2023·山东淄博·山东省淄博实验中学校考三模)已知抛物线的焦点为,直线与抛物线交于两点,是线段的中点,过作轴的垂线交抛物线于点,则下列判断不正确的是( )
A.若过点,则的准线方程为B.若过点,则
C.若,则D.若,则点的坐标为
【答案】D
【分析】根据直线与横轴的交点坐标、抛物线的定义,结合平面向量数量积的运算性质、根的一元二次方程根与系数的关系逐一判断即可.
【详解】设,对于A项,若过点,则点的坐标为,所以,
故的准线方程为,故A项正确;对于B项,由A可得的方程为,
与的方程联立,消去并整理,得,则,,
根据抛物线的定义,可得,,.
所以,所以,
故B项正确;
对于C项,将的方程与的方程联立,得,所以,.
设,则,所以,即,
由得,
即,
所以,所以,故C正确;
对于D项,由C知,,所以焦点,故D错误.
故选:D
【点睛】关键点睛:利用抛物线的定义、一元二次方程根与系数的关系是解题的关键.
2.(2023·江苏常州·江苏省前黄高级中学校考二模)已知抛物线,F为抛物线C的焦点,下列说法正确的是( )
A.若抛物线C上一点P到焦点F的距离是4,则P的坐标为、
B.抛物线C在点处的切线方程为
C.一个顶点在原点O的正三角形与抛物线相交于A、B两点,的周长为
D.点H为抛物线C的上任意一点,点,,当t取最大值时,的面积为2
【答案】ABD
【分析】根据抛物线定义判断A,利用导函数与切线的关系求解B,设点,根据点在抛物线上即可求解C,利用抛物线定义结合图形分析得到直线GH与抛物线C相切时t取最大值,即可求解.
【详解】A选项:由抛物线C的定义知,
解得代入可得,
所以P的坐标为、,故A正确;
B选项:由得,,
切线方抛物线C在点处的切线斜率为,
所以切线方程为,故B正确;
C选项:顶点在原点O的正三角形与抛物线相交与A、B两点,
设正三角形的边长为,则根据对称性可得
且点在抛物线上,所以,解得,
所以这个正三角形的边长为,故C错误;
D选项:F为抛物线的焦点,过H作HD垂直抛物线C的准线于点D,
如图,
由抛物线的定义知,
当t取最大值时,取最小值,
即直线GH与抛物线C相切.
设直线HG的方程为,
由得,
所以,解得,
此时,即,
所以,故,
所以,故D正确.
故选:ABD.
3.(2023·江苏常州·校考二模)如图,已知抛物线,过抛物线焦点的直线自上而下,分别交抛物线与圆于四点,则( )
A.B.
C.D.
【答案】BC
【分析】由题知,,设直线为,联立方程,消去得,,然后根据直线与抛物线位置关系,焦点弦性质,韦达定理,求导逐个计算即可.
【详解】由题知,,
设直线为,
联立方程,
消去得,
所以,
由抛物线的定义知,
因为,
所以,故A错误;
又
所以,故B正确;
又,
由上述知,当时等号成立,
所以,故C正确;
又,
由上述知,
所以,
所以,其中,
令,
所以,
当时,单调递减,
当时,单调递增,
所以,
所以,故D错误;
故选:BC
4.(2023·江苏南通·江苏省如皋中学校考模拟预测)已知点为抛物线上的动点,为抛物线的焦点,若的最小值为1,点,则下列结论正确的是( )
A.抛物线的方程为
B.的最小值为
C.点在抛物线上,且满足,则
D.过作两条直线分别交抛物线(异于点)于两点,若点到距离均为,则直线的方程为
【答案】ACD
【分析】对于A:由焦半径公式求出,即可求出C的方程;对于B:设,表示出,利用基本不等式求出的最小值为;
对于C:利用几何法求出直线PQ的斜率,得到直线PQ的方程,与抛物线联立后,利用“设而不求法”求出;对于D:设,证明出、满足方程,即可判断.
【详解】对于A:设,则,当且仅当时取等号,故,故,故C的方程为,故A正确;
对于B:由C的方程为可得:.
设.由抛物线定义可得:.而,
所以.
当时,;
当时,(当且仅当,即时等号成立.)
所以的最小值为.故B错误;
于C:不妨设PQ的斜率为正,如图示:分别过P、Q作PC,QB垂直准线于C、B, 过Q作于D.
由抛物线定义可得:.
因为,不妨设,则.
所以在直角三角形中,.由勾股定理得:.
所以直线PQ的斜率为,所以直线PQ的方程为.
与抛物线联立,消去x得:,即.
由焦点弦的弦长公式可得:.故C正确;
对于D:设,则直线于是,整理得:.又,故有,即,故满足方程.
同理可得:也满足方程,所以直线MN的方程为.故D正确.
故选:ACD
【点睛】解析几何简化运算的常见方法:
(1)正确画出图形,利用平面几何知识简化运算;
(2)坐标化,把几何关系转化为坐标运算;
(3)巧用定义,简化运算.
5.(2023·江苏·统考二模)已知抛物线C:的焦点为F,过动点P的两条直线,均与C相切,设,的斜率分别为,,若,则的最小值为____________.
【答案】
【分析】根据已知条件设出过点P且与抛物线C的相切的方程,联立切线方程与抛物线方程,利用直线与抛物线相切的关系及韦达定理,得出过点的动直线,结合点到直线的距离公式即可求解.
【详解】由,得,解得,
所以抛物线C:的焦点为.
设,过点P作抛物线C的切线方程为,
由,消去,得,
因为与抛物线C相切,
所以,即,
设,是方程的两根,则,
因为,
所以,即,
所以
所以点在直线上运动,
设到直线的距离为d,则,
当时,取得的最小值即为点到直线的距离,
所以到直线的距离的最小值为.
故答案为:.
【点睛】关键点睛:解决此题的关键是根据已知条件求出过点的动直线,进而将所求问题转化为点到直线的距离问题,结合点到直线的距离公式求解即可.
6.(2023·江苏南通·二模)已知点在抛物线上,过作的准线的垂线,垂足为,点为的焦点.若,点的横坐标为,则_______.
【答案】
【分析】不妨设点在第一象限,可得点,分析可知直线的倾斜角为,利用直线的斜率公式可得出关于的等式,结合的取值范围可求得的值.
【详解】如下图所示:
不妨设点在第一象限,联立可得,即点
易知轴,则轴,则,
所以,直线的倾斜角为,易知点,
所以,,整理可得,且有,故,
等式两边平方可得,即,
解得(6舍去)
故答案为:.
7.(2023·江苏南通·江苏省如皋中学校考模拟预测)抛物线的焦点坐标是______.
【答案】
【分析】将抛物线的方程化为标准形式,即可求解出焦点坐标.
【详解】因为抛物线方程,焦点坐标为,且,
所以焦点坐标为,
故答案为:.
8.(2023·江苏无锡·辅仁高中校联考模拟预测)在平面直角坐标系中,抛物线的焦点为F,准线为l,P为抛物线上一点,过点P作,交准线l于点A.若,则的长为_________.
【答案】
【分析】由抛物线的定义得出是等边三角形,再由定义得出点坐标,进而由距离公式求解.
【详解】不妨设点在第二象限,由抛物线定义可得,又,
所以是等边三角形.所以,则,
则,,则.
故答案为:
9.(2023·江苏南京·统考二模)已知拋物线和圆.
(1)若抛物线的准线与轴相交于点,是过焦点的弦,求的最小值;
(2)已知,,是拋物线上互异的三个点,且点异于原点.若直线,被圆截得的弦长都为2,且,求点的坐标.
【答案】(1)
(2)或
【分析】(1)首先求出抛物线的焦点坐标与准线方程,设方程为,,,联立直线与抛物线方程,消元、列出韦达定理,根据数量积的坐标表示得到,再根据重要不等式计算可得;
(2)设,,,即可得到、的方程,由点到直线的距离公式得到、为方程的两根,即可得到,由可得,由斜率之积为,求出,即可得解.
【详解】(1)拋物线的焦点为,准线为,则,
设方程为,,,
由,消去整理得,所以,,
所以,,
则
,当且仅当时取等号,
即的最小值为.
(2)设,,,
则,,
圆的圆心为,半径,
所以,则,
同理可得,
所以、为方程的两根,
所以,又,所以,
所以,即,解得,
所以点坐标为或.
→➍专题训练←
1.(2023·湖南长沙·长沙市明德中学校考三模)已知抛物线的焦点为 ,准线为,为上一点,,垂足为,与轴交点为,若,且的面积为,则的方程为( )
A.B.C.D.
【答案】A
【详解】由抛物线定义知,所以为等边三角形,为的中点,
所以,,
的面积,所以的方程为.
故选:A.
2.(2023·安徽铜陵·统考三模)已知抛物线,点在上,直线与坐标轴交于两点,若面积的最小值为1,则( )
A.1B.C.1或D.或
【答案】B
【详解】
不妨设,由题可得无解,
否则若直线和抛物线有交点时,当时,面积将趋近,
故,解得.
由图可知,当恰好为斜率为的直线和抛物线的切点时,的面积最小.
令,不妨,则,
又点到直线的距离为,
则,解得(舍去).
故选:B
3.(2023·江苏南通·三模)抛物线的焦点为,过点的直线交抛物线于两点,以为直径的圆交轴于两点,为坐标原点,则的内切圆直径最小值为( ).
A.B.C.D.
【答案】B
【详解】由题意知,设直线的方程为,.
由得,,故,,.
,
以为直径的圆的圆心坐标为,半径为,
圆心到轴的距离为,
故.
设的内切圆半径为,由的面积公式得,,
即,故.
令,则且,
所以,
因为,所以在上单调递增;
当时,.
因此的内切圆直径最小值为.
故选:B
4.(多选)(2023·安徽马鞍山·统考三模)已知抛物线:的焦点为,点为坐标原点,点在抛物线上,直线与抛物线交于点,则( )
A.的准线方程为B.
C.直线的斜率为D.
【答案】CD
【详解】由题意可知,,得,则抛物线方程为,所以抛物线的准线方程为,故A错误;
抛物线的焦点,,则直线的方程为,与抛物线方程联立,得,
设,,
,则,故B错误,C正确;
,得或,
当时,,当时,,
即,,,故D正确.
故选:CD
5.(多选)(2023·安徽黄山·统考三模)已知为抛物线的焦点,过的直线与抛物线交于两点(点在第一象限),过线段的中点作轴的垂线,交抛物线于点,交抛物线的准线于点,为坐标原点,则下列说法正确的是( )
A.当时,直线的斜率为
B.
C.的面积不小于的面积
D.
【答案】ACD
【详解】由抛物线,得,准线为.
设直线的方程为,即,设,,
联立,整理得,
则,,
所以,
.
对于A,因为,
所以,即,
联立,解得,
所以直线的方程为,即,
即直线的斜率为,故A正确;
对于B,由,,
所以,则,
代入抛物线,得,即,
则,,
所以,故B错误;
对于C,,
点到直线的距离为,
点到直线的距离为,
则,
,
因为函数在上单调递增,且,
所以,故C正确;
对于D,,
即,
即,
即,
而,即,
所以,故D正确.
故选:ACD.
6.(2023·吉林·统考三模)已知点,动点M在直线上,过点M且垂直于x轴的直线与线段的垂直平分线交于点P,记点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)已知圆的一条直径为,延长分别交曲线C于两点,求四边形面积的最小值.
【答案】(1)
(2)36
【详解】(1)法一:设点,则.
由题意知,即,
整理得:,
则曲线C的方程为.
法二:由题意知,点P到点的距离等于其到直线的距离相等,
则点P的轨迹为以为焦点,以为准线的抛物线,
则曲线C的方程为.
(2)法一:由题意知,为圆的直径,则.
由题意知直线存在斜率,设为k,且,则直线的斜率为.
又OA所在直线为,
联立,解得:或,则不妨取S点横坐标为,
联立,解得:或,则不妨取A点横坐标为,
所以.
同理可得,
四边形的面积
,
令,,则,
因为S在上单调递增,所以当时,S有最小值36.
即当时,四边形面积的最小值为36
法二:设方程为,
由,得.
由,得,
∴,
同理可得:.
令,
则在上单调递增.
∴,
当即时,四边形面积的最小值为36
即四边形面积的最小值为36.
7.(2023·山西运城·统考三模)已知抛物线的焦点为,分别为上两个不同的动点,为坐标原点,当为等边三角形时,.
(1)求的标准方程;
(2)抛物线在第一象限的部分是否存在点,使得点满足,且点到直线的距离为2?若存在,求出点的坐标及直线的方程;若不存在,请说明理由.
【答案】(1)
(2)存在,点,直线的方程为.
【详解】(1)由对称性可知当为等边三角形时,两点关于轴对称,
当为等边三角形时,的高为,
由题意知点在上,代入,得,解得,
所以的标准方程为.
(2)由(1)知,根据题意可知直线的斜率不为0,
设直线的方程为,,,,
联立,得,
所以,即,且,,
所以,
由,得,
所以,所以,即,
又点在上,所以,即,①
所以,解得,
又点在第一象限,所以,所以.
又点到直线的距离,化简得,②
联立①②解得,或(舍去),或(舍去).
此时点,直线的方程为.
8.(2023·河北石家庄·统考三模)已知为抛物线上不同两点,为坐标原点,,过作于,且点.
(1)求直线的方程及抛物线的方程;
(2)若直线与直线关于原点对称,为抛物线上一动点,求到直线的距离最短时,点的坐标.
【答案】(1),
(2)
【详解】(1)如图,
由点,得直线的斜率为1,又,则直线的斜率为,
故直线的方程为,整理得直线的方程为
设,
联立,得,则,
由,得,
即,因为,所以,
所以,解得,故抛物线方程为
(2)设点是直线上任一点,则点关于原点的对称点在直线上,所以,
即直线的方程为.
设点,则,点到直线的距离,
当时,的最小值是,此时,.
9.(2023·安徽铜陵·统考三模)已知抛物线,其焦点为,定点,过的直线与抛物线相交于,两点,当的斜率为1时,的面积为2.
(1)求抛物线的标准方程;
(2)若抛物线在,点处的切线分别为,,且,相交于点,求距离的最小值.
【答案】(1)
(2)
【详解】(1)过且斜率为1的直线为:,
代入拋物线方程可知,解得或,
则不妨令点M,N分别为,,
∴,∴,,
∴抛物线方程为:;
(2)设,,,切点,
由题意可知:对于抛物线,当时,;,;时,,
显然时,;时,,
若,则点处的切线为,即,
∵,∴,即,
同理,若,点处的切线为,
时,,则在顶点处的切线为,符合上述表达式,
∴点处的切线为;点处的切线为,
在这两条切线上,∴,
则的直线方程为,
∵在上,∴,即在定直线上,
∴长的最小值即为点到直线的距离,
此时.
命题解读
命题预测
复习建议
抛物线的标准方程及其几何性质是高考考查知识点之一,对于抛物线作为圆锥曲线的一个重要内容,高考主要考查抛物线的方程、焦点、准线及几何性质,在选择、填空和解答中都有可能出现,主要是考查学生的运算能力和数形结合能力。
预计2024年的高考抛物线的考查还是以常考查的知识点为主,不会变化很大,主要还是抛物线的方程和几何性质,注重数形结合和分析能力的考查。
集合复习策略:
1.理解抛物线的定义以及椭圆抛物线的标准方程的形式,准线等;
2.掌握椭抛物线的简单几何性质。
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
p的几何意义:焦点F到准线l的距离
标准方程
y2=2px(p>0)
y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)
p的几何意义:焦点F到准线l的距离
图形
顶点
O(0,0)
对称轴
直线y=0
直线x=0
焦点
F
F
F
F
离心率
e=1
准线方程
x=-
x=
y=-
y=
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口方向
向右
向左
向上
向下
相关试卷
这是一份新高考数学一轮复习考点精讲+题型精练专题29 双曲线的标准方程及几何性质(2份,原卷版+解析版),文件包含新高考数学一轮复习考点精讲+题型精练专题29双曲线的标准方程及几何性质原卷板doc、新高考数学一轮复习考点精讲+题型精练专题29双曲线的标准方程及几何性质解析板doc等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
这是一份新高考数学一轮复习考点精讲+题型精练专题28 椭圆的标准方程及几何性质(2份,原卷版+解析版),文件包含新高考数学一轮复习考点精讲+题型精练专题28椭圆的标准方程及几何性质原卷版doc、新高考数学一轮复习考点精讲+题型精练专题28椭圆的标准方程及几何性质解析版doc等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份新高考数学一轮复习考点精讲+题型精练专题27 圆的方程及几何性质(2份,原卷版+解析版),文件包含新高考数学一轮复习考点精讲+题型精练专题27圆的方程及几何性质原卷版doc、新高考数学一轮复习考点精讲+题型精练专题27圆的方程及几何性质解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。