


专题04图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(甘肃专用)
展开
这是一份专题04图形的性质选填题-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共34页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
1.(2024·甘肃兰州·中考真题)已知∠A=80°,则∠A的补角是( )
A.100°B.80°C.40°D.10°
2.(2023·甘肃兰州·中考真题)如图,直线与相交于点O,则( )
A.B.C.D.
3.(2023·甘肃兰州·中考真题)如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角( )
A.B.C.D.
4.(2023·甘肃兰州·中考真题)如图1是一段弯管,弯管的部分外轮廓线如图2所示是一条圆弧,圆弧的半径,圆心角,则( )
A.B.C.D.
5.(2024·甘肃临夏·中考真题)如图,是的直径,,则( )
A.B.C.D.
6.(2024·甘肃兰州·中考真题)如图,小张想估测被池塘隔开的A,B两处景观之间的距离,他先在外取一点C,然后步测出的中点D,E,并步测出的长约为,由此估测A,B之间的距离约为( )
A.B.C.D.
7.(2024·甘肃临夏·中考真题)如图,是坐标原点,菱形的顶点在轴的负半轴上,顶点的坐标为,则顶点的坐标为( )
A.B.C.D.
8.(2024·甘肃兰州·中考真题)如图,小明在地图上量得,由此判断幸福大街与平安大街互相平行,他判断的依据是( )
A.同位角相等,两直线平行B.内错角相等,两直线平行
C.同旁内角互补,两直线平行D.对顶角相等
9.(2024·甘肃兰州·中考真题)如图,在中,,,,则( )
A.B.C.D.
10.(2022·甘肃武威·中考真题)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形,若对角线的长约为8mm,则正六边形的边长为( )
A.2mmB.C.D.4mm
11.(2022·甘肃武威·中考真题)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点是这段弧所在圆的圆心,半径,圆心角,则这段弯路()的长度为( )
A.B.C.D.
12.(2022·甘肃武威·中考真题)如图1,在菱形中,,动点从点出发,沿折线方向匀速运动,运动到点停止.设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( )
A.B.C.D.
13.(2022·甘肃兰州·中考真题)如图,直线,直线c与直线a,b分别相交于点A,B,,垂足为C.若,则( )
A.52°B.45°C.38°D.26°
14.(2022·甘肃兰州·中考真题)如图,内接于,CD是的直径,,则( )
A.70°B.60°C.50°D.40°
15.(2023·甘肃武威·中考真题)如图,是等边的边上的高,以点为圆心,长为半径作弧交的延长线于点,则( )
A.B.C.D.
16.(2023·甘肃兰州·中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a和直线外一定点O,过点O作直线与a平行.(1)以O为圆心,单位长为半径作圆,交直线a于点M,N;(2)分别在的延长线及上取点A,B,使;(3)连接,取其中点C,过O,C两点确定直线b,则直线.按以上作图顺序,若,则( )
A.B.C.D.
17.(2023·甘肃兰州·中考真题)如图,在矩形中,点E为延长线上一点,F为的中点,以B为圆心,长为半径的圆弧过与的交点G,连接.若,,则( )
A.2B.2.5C.3D.3.5
18.(2024·甘肃·中考真题)如图,在矩形中,对角线,相交于点O,,,则的长为( )
A.6B.5C.4D.3
19.(2024·甘肃·中考真题)如图,点A,B,C在上,,垂足为D,若,则的度数是( )
A.B.C.D.
20.(2024·甘肃临夏·中考真题)如图,在中,,,则的长是( )
A.3B.6C.8D.9
21.(2024·甘肃兰州·中考真题)如图1,在菱形中,,连接,点M从B出发沿方向以的速度运动至D,同时点N从B出发沿方向以的速度运动至C,设运动时间为,的面积为,y与x的函数图象如图2所示,则菱形的边长为( )
A.B.C.D.
22.(2024·甘肃临夏·中考真题)如图1,矩形中,为其对角线,一动点从出发,沿着的路径行进,过点作,垂足为.设点的运动路程为,为,与的函数图象如图2,则的长为( )
A.B.C.D.
23.(2024·甘肃·中考真题)如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为( )
A.2B.3C.D.
24.(2023·甘肃武威·中考真题)如图1,正方形的边长为4,为边的中点.动点从点出发沿匀速运动,运动到点时停止.设点的运动路程为,线段的长为,与的函数图象如图2所示,则点的坐标为( )
A.B.C.D.
25.(2023·甘肃武威·中考真题)如图,将矩形对折,使边与,与分别重合,展开后得到四边形.若,,则四边形的面积为( )
A.2B.4C.5D.6
26.(2022·甘肃兰州·中考真题)如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,,,则( )
A.4B.C.2D.
27.(2022·甘肃兰州·中考真题)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为( )
A.B.C.D.
28.(2023·甘肃武威·中考真题)如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜与地面的夹角( )
A.B.C.D.
二、填空题
29.(2023·甘肃武威·中考真题)如图,内接于,是的直径,点是上一点,,则 .
30.(2023·甘肃武威·中考真题)如图,菱形中,,,,垂足分别为,,若,则 .
31.(2023·甘肃武威·中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点处离开水面,逆时针旋转上升至轮子上方处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从处(舀水)转动到处(倒水)所经过的路程是 米.(结果保留)
32.(2023·甘肃兰州·中考真题)如图,在中,,于点E,若,则 .
33.(2023·甘肃兰州·中考真题)如图,将面积为7的正方形和面积为9的正方形分别绕原点O顺时针旋转,使,落在数轴上,点A,D在数轴上对应的数字分别为a,b,则 .
34.(2024·甘肃·中考真题)甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形和扇形有相同的圆心O,且圆心角,若,,则阴影部分的面积是 .(结果用π表示)
35.(2024·甘肃临夏·中考真题)“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框为正六边形(如图2),则该正六边形的每个内角为 .
36.(2024·甘肃临夏·中考真题)如图,在中,点的坐标为0,1,点的坐标为,点的坐标为,点在第一象限(不与点重合),且与全等,点的坐标是 .
37.(2024·甘肃兰州·中考真题)如图,四边形为正方形,为等边三角形,于点F,若,则 .
38.(2024·甘肃兰州·中考真题)“轮动发石车”是我国古代的一种投石工具,在春秋战国时期被广泛应用,图1是陈列在展览馆的仿真模型,图2是模型驱动部分的示意图,其中,的半径分别是1cm和10cm,当顺时针转动3周时,上的点P随之旋转,则 .
39.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片,为折痕,以点为圆心,为半径作弧,分别交,于,两点,则的长度为 (结果保留).
40.(2022·甘肃兰州·中考真题)如图,在矩形纸片ABCD中,点E在BC边上,将沿DE翻折得到,点F落在AE上.若,,则 cm.
41.(2022·甘肃武威·中考真题)如图,菱形中,对角线与相交于点,若,,则的长为 cm.
参考答案:
1.A
【分析】直接利用互补两角的关系进而得出答案.
【详解】解:∵∠A=80°,
∴∠A补角为:180°﹣80°=100°.
故选A.
【点睛】主要考查了互补两角的关系,正确把握定义是解题关键.
2.B
【分析】利用对顶角相等得到,即可求解.
【详解】解:读取量角器可知:,
∴,
故选:B.
【点睛】本题考查了对顶角相等,量角器读数,是基础题.
3.A
【分析】由正八边形的外角和为,结合正八边形的每一个外角都相等,再列式计算即可.
【详解】解:∵正八边形的外角和为,
∴,
故选A
【点睛】本题考查的是正多边形的外角问题,熟记多边形的外角和为是解本题的关键.
4.B
【分析】根据弧长公式求解即可.
【详解】解:弧的半径,圆心角,
∴,
故选:B.
【点睛】题目主要考查弧长公式,熟练掌握运用弧长公式是解题关键.
5.D
【分析】本题考查圆周角定理,关键是由圆周角定理推出.
由圆周角定理得到,由邻补角的性质求出.
【详解】解:,
,
.
故选:D.
6.C
【分析】本题考查三角形的中位线的实际应用,由题意,易得为的中位线,根据三角形的中位线定理,即可得出结果.
【详解】解:∵点D,E,分别为的中点,
∴为的中位线,
∴;
故选:C.
7.C
【分析】本题考查平面直角坐标系内两点间的距离公式,菱形的性质,坐标与图形.结合菱形的性质求出是解题关键.由两点间的距离公式结合菱形的性质可求出,从而可求出,即得出顶点的坐标为.
【详解】解:如图,
∵点的坐标为,
∴.
∵四边形为菱形,
∴,
∴,
∴顶点的坐标为.
故选C.
8.B
【分析】本题主要考查了平行线的判定,由,即可得出福大街与平安大街互相平行,即内错角相等,两直线平行.
【详解】解:∵,
∴福大街与平安大街互相平行,
判断的依据是:内错角相等,两直线平行,
故选:B.
9.B
【分析】本题主要考查了等腰三角形的性质,三角形外角的性质.根据等腰三角形的性质,可得,再由三角形外角的性质,即可求解.
【详解】解:∵,,
∴,
∵,
∴,
∴.
故选:B
10.D
【分析】如图,连接CF与AD交于点O,易证△COD为等边三角形,从而CD=OC=OD=AD,即可得到答案.
【详解】连接CF与AD交于点O,
∵为正六边形,
∴∠COD= =60°,CO=DO,AO=DO=AD=4mm,
∴△COD为等边三角形,
∴CD=CO=DO=4mm,
即正六边形的边长为4mm,
故选:D.
【点睛】本题考查了正多边形与圆的性质,正确把握正六边形的中心角、半径与边长的关系是解题的关键.
11.C
【分析】根据题目中的数据和弧长公式,可以计算出这段弯路()的长度.
【详解】解:∵半径OA=90m,圆心角∠AOB=80°,
这段弯路()的长度为:,
故选C
【点睛】本题考查了弧长的计算,解答本题的关键是明确弧长计算公式
12.B
【分析】根据图1和图2判定三角形ABD为等边三角形,它的面积为解答即可.
【详解】解:在菱形ABCD中,∠A=60°,
∴△ABD为等边三角形,
设AB=a,由图2可知,△ABD的面积为,
∴△ABD的面积
解得:a=(负值已舍)
故选B
【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.
13.C
【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.
【详解】解:∵ab,
∴∠1=∠ABC=52°,
∵AC⊥b,
∴∠ACB=90°,
∴∠2=90°-∠ABC=38°,
故选:C.
【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.
14.C
【分析】由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B的度数.
【详解】解:∵CD是⊙O的直径,
∴∠CAD=90°,
∴∠ACD+∠D=90°,
∵∠ACD=40°,
∴∠ADC=∠B=50°.
故选:C.
【点睛】本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.
15.C
【分析】由等边三角形的性质求解,再利用等腰三角形的性质可得,从而可得答案.
【详解】解:∵是等边的边上的高,
∴,
∵,
∴,
故选C
【点睛】本题考查的是等边三角形的性质,等腰三角形的性质,熟记等边三角形与等腰三角形的性质是解本题的关键.
16.A
【分析】证明,可得,结合,C为的中点,可得.
【详解】解:∵,,
∴,
∴,
∵,C为的中点,
∴,
故选A.
【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.
17.C
【分析】利用直角三角形斜边中线的性质求得,在中,利用勾股定理即可求解.
【详解】解:∵矩形中,
∴,
∵F为的中点,,
∴,
在中,,
故选:C.
【点睛】本题考查了矩形的性质,直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线的长等于斜边的一半”是解题的关键.
18.C
【分析】根据矩形的性质,得,结合,得到是等边三角形,结合,得到,解得即可.
本题考查了矩形的性质,等边三角形的判定和性质,熟练掌握矩形的性质是解题的关键.
【详解】根据矩形的性质,得,
∵,
∴是等边三角形,
∵,
∴,
解得.
故选C.
19.A
【分析】根据得到,根据得到,根据直角三角形的两个锐角互余,计算即可.
本题考查了圆周角定理,直角三角形的性质,熟练掌握圆周角定理,直角三角形的性质是解题的关键.
【详解】∵,
∴,
∵,
∴,
∴.
故选A.
20.B
【分析】本题考查解直角三角形,等腰三角形的性质,勾股定理.正确作出辅助线是解题关键.过点A作于点D.由等腰三角形三线合一的性质得出.根据,可求出,最后根据勾股定理可求出,即得出.
【详解】解:如图,过点A作于点D.
∵,
∴.
在中,,
∴,
∴,
∴.
故选B.
21.C
【分析】本题主要考查菱形的性质和二次函数的性质,根据题意可知,,结合菱形的性质得,过点M作于点H,则,那么,设菱形的边长为a,则,那么点M和点N同时到达点D和点C,此时的面积达到最大值为,利用最大值即可求得运动时间,即可知菱形边长.
【详解】解:根据题意知,,,
∵四边形为菱形,,
∴,
过点M作于点H,连接交于点O,如图,
则,
那么,的面积为,
设菱形的边长为a,
∴,
∴点M和点N同时到达点D和点C,此时的面积达到最大值为,
∴,解得,(负值舍去),
∴.
故选:C.
22.B
【分析】本题考查了动点问题的函数图象,根据图象得出信息是解题的关键.
根据函数的图象与坐标的关系确定的长,再根据矩形性质及勾股定理列方程求解.
【详解】解:由图象得:,当时,,此时点P在边上,
设此时,则,,
在中,,
即:,
解得:,
,
故选:B.
23.C
【分析】结合图象,得到当时,,当点P运动到点B时,,根据菱形的性质,得,继而得到,当点P运动到中点时,的长为,解得即可.
本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.
【详解】结合图象,得到当时,,
当点P运动到点B时,,
根据菱形的性质,得,
故,
当点P运动到中点时,的长为,
故选C.
24.C
【分析】证明,,,则当P与A,B重合时,最长,此时,而运动路程为0或4,从而可得答案.
【详解】解:∵正方形的边长为4,为边的中点,
∴,,,
当P与A,B重合时,最长,
此时,
运动路程为0或4,
结合函数图象可得,
故选C
【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.
25.B
【分析】由题意可得四边形是菱形,,,由菱形的面积等于对角线乘积的一半即可得到答案.
【详解】解:∵将矩形对折,使边与,与分别重合,展开后得到四边形,
∴,与互相平分,
∴四边形是菱形,
∵,,
∴菱形的面积为.
故选:B
【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.
26.C
【分析】根据菱形的性质得出,,再由直角三角形斜边上的中线等于斜边一半得出.利用菱形性质、直角三角形边长公式求出,进而求出.
【详解】是菱形,E为AD的中点,
,.
是直角三角形,.
,,
,.
,即,
,.
故选:C.
【点睛】本题主要考查菱形、直角三角形的性质的理解与应用能力.解题关键是得出并求得.求解本题时应恰当理解并运用菱形对角线互相垂直且平分、对角相等,直角三角形斜边上的中线等于斜边一半的性质.
27.D
【分析】根据S阴影=S扇形AOD-S扇形BOC求解即可.
【详解】解:S阴影=S扇形AOD-S扇形BOC
=
=
=
=2.25π(m2)
故选:D.
【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.
28.B
【分析】如图,过作平面镜,可得,,而,再建立方程,可得,从而可得答案.
【详解】解:如图,过作平面镜,
∴,,
而,
∴,
∴,
∴,
故选B.
【点睛】本题考查的是垂直的定义,角的和差运算,角平分线的含义,属于跨学科题,熟记基础概念是解本题的关键.
29.35
【分析】由同弧所对的圆周角相等,得再根据直径所对的圆周角为直角,得,然后由直角三角形的性质即可得出结果.
【详解】解:是所对的圆周角,
是的直径,
,
在中,,
故答案为: .
【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.
30.
【分析】根据菱形的性质,含直角三角形的性质,及三角函数即可得出结果.
【详解】解:在菱形中,,
,
,
,
,
在中,,
同理,,
,
,
在中,
.
故答案为:.
【点睛】本题考查了菱形的性质,含直角三角形的性质,及三角函数等知识,熟练掌握菱形的性质是解题的关键.
31.
【分析】把半径和圆心角代入弧长公式即可;
【详解】
故填:.
【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.
32.
【分析】证明,,由,可得,结合,可得.
【详解】解:∵,,
∴,,
∵,
∴,
∴,
∵,
∴;
故答案为:
【点睛】本题考查的是等腰三角形的性质,平行四边形的性质,三角形的内角和定理的应用,熟记基本几何图形的性质是解本题的关键.
33.
【分析】分别求出两个正方形的边长,从而得到a,b的值,代入计算即可.
【详解】∵正方形的面积为7,正方形的面积为9
∴,
即,
∴
故答案为:
【点睛】本题考查算术平方根的意义,在数轴上表示实数,正确求出算术平方根是解题的关键.
34.
【分析】根据扇形面积公式计算即可.本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.
【详解】∵圆心角,,,
∴阴影部分的面积是
故答案为:.
35.120
【分析】本题考查多边形内角和,正多边形的性质.掌握n边形内角和为和正多边形的每个内角都相等是解题关键.根据多边形内角和公式求出正六边形的内角和为,再除以6即可.
【详解】解:∵正六边形的内角和为,
∴正六边形的每个内角为.
故答案为:120.
36.1,4
【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点在第一象限(不与点重合),且与全等,画出图形,结合图形的对称性可直接得出D1,4.
【详解】解:∵点在第一象限(不与点重合),且与全等,
∴,,
∴可画图形如下,
由图可知点C、D关于线段AB的垂直平分线x=2对称,则D1,4.
故答案为:1,4.
37.2
【分析】本题考查正方形的性质,等边三角形的性质,含30度角的直角三角形,根据正方形和等边三角形的性质,得到为含30度角的直角三角形,,根据含30度角的直角三角形的性质求解即可.
【详解】解:∵四边形为正方形,为等边三角形,,,
∴,
∴,
∴;
故答案为:2.
38.108
【分析】本题主要考查了求弧长.先求出点P移动的距离,再根据弧长公式计算,即可求解.
【详解】解:根据题意得:点P移动的距离为,
∴,
解得:.
故答案为:108
39./
【分析】本题主要考查了弧长的计算、正方形的性质及翻折变换(折叠问题),解直角三角形,熟知正方形的性质、图形翻折的性质及弧长的计算公式是解题的关键.
由对折可知,,过点E作的垂线,进而可求出的度数,则可得出的度数,最后根据弧长公式即可解决问题.
【详解】解:∵折叠,且四边形是正方形
四边形是矩形,,
则,.
过点E作于P,
则,
,
在中,,
,
则,
的长度为:,
故答案为:
40.
【分析】由将△CDE沿DE翻折得到△FDE,点F落在AE上,可得EF=CE=3cm,CD=DF,∠DEC=∠DEF,由矩形的性质得∠DFE=∠C=90°=∠DFA,从而得AF=6cm,AD=AE=9cm,进而由勾股定理既可以求解。
【详解】解:∵将△CDE沿DE翻折得到△FDE,点F落在AE上,,四边形ABCD是矩形,
∴EF=CE=3cm,CD=DF,∠DEC=∠DEF,∠DFE=∠C=90°=∠DFA,
∵AF=2EF,
∴AF=6cm,
∴AE=AF+EF=6+3=9(cm),
∵四边形ABCD是矩形,
∴AB=CD=DF,,
∴∠ADE=∠DEC=∠DEF,
∴AD=AE=9cm,
∵在Rt△ADF中,AF2+DF2=AD2
∴62+DF2=92,
∴DF= (cm),
AB=DF= (cm),
故答案为∶.
【点睛】本题考查矩形的性质、勾股定理及轴对称,熟练掌握轴对称的性质是解题的关键.
41.8
【分析】利用菱形对角线互相垂直且平分的性质结合勾股定理得出答案即可.
【详解】解: 菱形中,对角线,相交于点,AC=4cm,
,,AO=OC=AC=2cm
cm,
cm,
cm,
故答案为:8.
【点睛】此题主要考查了菱形的性质以及勾股定理的应用,熟练掌握菱形的性质,运用勾股定理解直角三角形,是解题关键.
题号
1
2
3
4
5
6
7
8
9
10
答案
A
B
A
B
D
C
C
B
B
D
题号
11
12
13
14
15
16
17
18
19
20
答案
C
B
C
C
C
A
C
C
A
B
题号
21
22
23
24
25
26
27
28
答案
C
B
C
C
B
C
D
B
相关试卷
这是一份专题06图形的变化-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份专题05图形的性质解答题-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共48页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份专题03函数-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共60页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
