开学活动
搜索
    上传资料 赚现金

    专题06图形的变化-三年(2022-2024)中考数学真题分项汇编(甘肃专用)

    专题06图形的变化-三年(2022-2024)中考数学真题分项汇编(甘肃专用)第1页
    专题06图形的变化-三年(2022-2024)中考数学真题分项汇编(甘肃专用)第2页
    专题06图形的变化-三年(2022-2024)中考数学真题分项汇编(甘肃专用)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题06图形的变化-三年(2022-2024)中考数学真题分项汇编(甘肃专用)

    展开

    这是一份专题06图形的变化-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    1.(2024·甘肃临夏·中考真题)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是( )
    A.主视图和左视图完全相同B.主视图和俯视图完全相同
    C.左视图和俯视图完全相同D.三视图各不相同
    2.(2024·甘肃·中考真题)如图所示,该几何体的主视图是( )
    A.B.C.D.
    3.(2024·甘肃临夏·中考真题)如图,在中,,,则的长是( )
    A.3B.6C.8D.9
    4.(2023·甘肃武威·中考真题)若,则( )
    A.6B.C.1D.
    5.(2022·甘肃兰州·中考真题)已知,,若,则( )
    A.4B.6C.8D.16
    6.(2022·甘肃武威·中考真题)若,,,则( )
    A.B.C.D.
    二、填空题
    7.(2024·甘肃临夏·中考真题)如图,等腰中,,,将沿其底边中线向下平移,使的对应点满足,则平移前后两三角形重叠部分的面积是 .
    8.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片,为折痕,以点为圆心,为半径作弧,分别交,于,两点,则的长度为 (结果保留).
    9.(2024·甘肃·中考真题)围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点 的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D中的一处即可,A,B,C,D位于棋盘的格点上)
    10.(2022·甘肃武威·中考真题)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为 cm.
    三、解答题
    11.(2022·甘肃兰州·中考真题)如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得,然后沿EB方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得.求凉亭AB的高度.(A,C,B三点共线,,,,.结果精确到0.1m)(参考数据:,,,,,)
    12.(2022·甘肃武威·中考真题)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:
    方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).
    数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.
    问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).
    参考数据:sin26.6°≈0.45,cs26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cs35°≈0.82,tan35°≈0.70.
    根据上述方案及数据,请你完成求解过程.
    13.(2022·甘肃兰州·中考真题)如图,是的外接圆,AB是直径,,连接AD,,AC与OD相交于点E.
    (1)求证:AD是的切线;
    (2)若,,求的半径.
    14.(2023·甘肃兰州·中考真题)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得、,.求“龙”字雕塑的高度.(B,C,D三点共线,.结果精确到0.1m)(参考数据:,,,,,)

    15.(2023·甘肃武威·中考真题)如图1,某人的一器官后面处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:
    请你根据上表中的测量数据,计算新生物处到皮肤的距离.(结果精确到)(参考数据:,,,,,)
    16.(2024·甘肃兰州·中考真题)单摆是一种能够产生往复摆动的装置,某兴趣小组利用摆球和摆线进行与单摆相关的实验探究,并撰写实验报告如下.
    解决问题:根据以上信息,求的长.(结果精确到)
    参考数据:,.
    17.(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度的实践活动.为乾元塔的顶端,,点,在点的正东方向,在点用高度为1.6米的测角仪(即米)测得点仰角为,向西平移14.5米至点,测得点仰角为,请根据测量数据,求乾元塔的高度.(结果保留整数,参考数据:,,)
    18.(2024·甘肃临夏·中考真题)根据背景素材,探索解决问题.
    19.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒垂直于地面,测角仪,在两侧,,点C与点E相距 (点C,H,E在同一条直线上),在D处测得简尖顶点A的仰角为,在F处测得筒尖顶点A的仰角为.求风电塔筒的高度.(参考数据:,,.)
    课题
    检测新生物到皮肤的距离
    工具
    医疗仪器等
    示意图

    说明
    如图2,新生物在处,先在皮肤上选择最大限度地避开器官的处照射新生物,检测射线与皮肤的夹角为;再在皮肤上选择距离处的处照射新生物,检测射线与皮肤的夹角为.
    测量数据
    ,,
    实验主题
    探究摆球运动过程中高度的变化
    实验用具
    摆球,摆线,支架,摄像机等
    实验说明
    如图1,在支架的横杆点O处用摆线悬挂一个摆球,将摆球拉高后松手,摆球开始往复运动.(摆线的长度变化忽略不计)
    如图2,摆球静止时的位置为点A,拉紧摆线将摆球拉至点B处,,,;当摆球运动至点C时,,.(点O,A,B,C,D,E在同一平面内)
    实验图示
    平面直角坐标系中画一个边长为2的正六边形
    背景素材
    六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.
    已知条件
    点与坐标原点重合,点在轴的正半轴上且坐标为
    操作步骤
    ①分别以点,为圆心,长为半径作弧,两弧交于点;
    ②以点为圆心,长为半径作圆;
    ③以的长为半径,在上顺次截取;
    ④顺次连接,,,,,得到正六边形.
    问题解决
    任务一
    根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)
    任务二
    将正六边形绕点顺时针旋转,直接写出此时点所在位置的坐标:______.
    参考答案:
    1.D
    【分析】本题考查几何体的三视图,根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看到的图形,即可得出答案.
    【详解】解:该几何体的三视图各不相同,主视图的中间出有两个“耳朵”而左视图则没有;俯视图是三个同心圆(夹在中间的圆由虚线构成).
    故选:D.
    2.C
    【分析】本题考查了简单几何体的三视图,根据从正面看得到的图形是主视图,可得答案.
    【详解】解:从正面看得到的图形是:
    故选:C.
    3.B
    【分析】本题考查解直角三角形,等腰三角形的性质,勾股定理.正确作出辅助线是解题关键.过点A作于点D.由等腰三角形三线合一的性质得出.根据,可求出,最后根据勾股定理可求出,即得出.
    【详解】解:如图,过点A作于点D.
    ∵,
    ∴.
    在中,,
    ∴,
    ∴,
    ∴.
    故选B.
    4.A
    【分析】根据等式的性质即可得出结果.
    【详解】解:等式两边乘以,得,
    故选:A.
    【点睛】本题考查了等式的性质,熟练掌握等式的性质是本题的关键.
    5.A
    【分析】根据相似三角形的性质得到,代入求解即可.
    【详解】解:∵,
    ∴,即,
    解得.
    故选:A.
    【点睛】此题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形性质.相似三角形性质:相似三角形对应边成比例,对应角相等.相似三角形的相似比等于周长比,相似三角形的相似比等于对应高,对应角平分线,对应中线的比,相似三角形的面积比等于相似比的平方.
    6.D
    【分析】根据△ABC∽△DEF,可以得到然后根据BC=6,EF=4,即可求解.
    【详解】解:∵

    ,,
    故选D
    【点睛】本题考查了相似三角形的性质,掌握相似三角形的性质是解题的关键.
    7./
    【分析】本题考查平移的性质,相似三角形的判定和性质,三线合一,根据平移的性质,推出,根据对应边上的中线比等于相似比,求出的长,三线合一求出的长,利用面积公式进行求解即可.
    【详解】解:∵等腰中,,,
    ∴,
    ∵为中线,
    ∴,,
    ∴,,
    ∴,
    ∵将沿其底边中线向下平移,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴;
    故答案为:.
    8./
    【分析】本题主要考查了弧长的计算、正方形的性质及翻折变换(折叠问题),解直角三角形,熟知正方形的性质、图形翻折的性质及弧长的计算公式是解题的关键.
    由对折可知,,过点E作的垂线,进而可求出的度数,则可得出的度数,最后根据弧长公式即可解决问题.
    【详解】解:∵折叠,且四边形是正方形
    四边形是矩形,,
    则,.
    过点E作于P,
    则,

    在中,,

    则,
    的长度为:,
    故答案为:
    9.A或C
    【分析】根据轴对称图形的定义解答即可.
    本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键.
    【详解】根据轴对称图形的定义,发现放在B,D处不能构成轴对称图形,放在A或C处可以,
    故答案为:A或C.
    10.
    【分析】根据矩形的性质可得AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,从而可得∠ABD=∠BDC,然后利用直角三角形斜边上的中线可得EG=BG,从而可得∠BEG=∠ABD,进而可得∠BEG=∠BDC,再证明△EBF∽△DCB,利用相似三角形的性质可求出BF的长,最后在Rt△BEF中,利用勾股定理求出EF的长,即可解答.
    【详解】解:∵四边形ABCD是矩形,
    ∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,
    ∴∠ABD=∠BDC,
    ∵AE=2cm,
    ∴BE=AB-AE=6-2=4(cm),
    ∵G是EF的中点,
    ∴EG=BG=EF,
    ∴∠BEG=∠ABD,
    ∴∠BEG=∠BDC,
    ∴△EBF∽△DCB,
    ∴,
    ∴,
    ∴BF=6,
    ∴EF=(cm),
    ∴BG=EF=(cm),
    故答案为:.
    【点睛】本题考查了相似三角形的判定与性质,勾股定理,矩形的性质,直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线,以及相似三角形的判定与性质是解题的关键.
    11.m
    【分析】根据题意可得BC=FG=DE=1.5,DF=GE=3,∠ACF=90°,然后设CF=x,则CD=(x+3),先在Rt△ACF中,利用锐角三角函数的定义求出AC的长,再在Rt△ACD中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.
    【详解】解:由题意得:
    BC=FG=DE=1.5,DF=GE=3,∠ACF=90°,
    设CF=x,
    ∴CD=CF+DF=(x+3),
    在Rt△ACF中,∠AFC=42°,
    ∴AC=CF•tan42°≈0.9x(m),
    在Rt△ACD中,∠ADC=31°,
    ∴tan31°,
    ∴x=6,
    经检验:x=6是原方程的根,
    ∴AB=AC+BC=0.9x+1.5=6.9(m),
    ∴凉亭AB的高约为6.9m.
    【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.
    12.16.9m
    【分析】设BF=x m,根据题意可得:DE=FG=1.5m,然后在Rt△CBF中,利用锐角三角函数的定义求出CF的长,再在Rt△ACF中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.
    【详解】解:设BF=x m,
    由题意得:
    DE=FG=1.5m,
    在Rt△CBF中,∠CBF=35°,
    ∴CF=BF•tan35°≈0.7x(m),
    ∵AB=8.8m,
    ∴AF=AB+BF=(8.8+x)m,
    在Rt△ACF中,∠CAF=26.6°,
    ∴tan26.6°= ≈0.5,
    ∴x=22,
    经检验:x=22是原方程的根,
    ∴CG=CF+FG=0.7x+1.5=16.9(m),
    ∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.
    【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.
    13.(1)见解析
    (2)2
    【分析】(1)先证∠BOC +∠AOD=90°,再因为,得出∠ADO +∠AOD=90°,即可得∠OAD=90°,即可由切线的判定定理得出结论;
    (2)先证明∠AED=∠DAE,得出DE=AD=,再证∠OAC=∠OCA,得tan∠OAC= tan∠OCA=,设OC=OA=R,则OE=R,在Rt△OAD中,由勾股定理,得
    ,解之即可.
    【详解】(1)证明:∵,
    ∴∠COD=90°,
    ∵∠BOC+∠COD+∠AOD=180°,
    ∴∠BOC +∠AOD=90°,
    ∵,
    ∴∠ADO +∠AOD=90°,
    ∵∠ADO +∠AOD+∠OAD=180°,
    ∴∠OAD=90°,
    ∵OA是⊙O的半径,
    ∴AD是⊙O的切线;
    (2)解:∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠B+∠BAC=90°,
    ∵∠BAC+∠CAD=∠OAD=90°,
    ∴∠B=∠CAD,
    ∵∠B+∠BOC+∠OCB=∠ADO+∠CAD+∠AED=180°,∠ADO=∠BOC,
    ∴∠AED=∠OCB,
    ∵OB=OC,
    ∴∠B=∠OCB,
    ∴∠AED=∠CAD,
    ∴DE=AD=,
    ∵OC=OA,
    ∴∠OAC=∠OCA,
    ∵OC⊥OD,
    ∴∠COE=90°,
    ∴tan∠OAC= tan∠OCA=,
    设OC=OA=R,
    则OE=R,
    在Rt△OAD中,∠OAD=90°,
    由勾股定理,得OD2=OA2+AD2,
    即,
    解得:R=2或R=0(不符合题意,舍去),
    ∴⊙O的半径为2.
    【点睛】本题考查切线的判定,解直角三角形,勾股定理,等腰三角形的判定,圆周角定理的推论,本题属圆的综合题目,熟练掌握相关性质与判定是解题的关键.
    14.“龙”字雕塑的高度为.
    【分析】在和中,分别求得和的长,据此求解即可.
    【详解】解:在中,,,
    ∴,
    在中,,,
    ∴,
    ∴,
    答:“龙”字雕塑的高度为.
    【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
    15.新生物处到皮肤的距离约为
    【分析】过点作,垂足为,在,用 与的正切值表示出,在中,用和的正切值表示出,由,联立求解即可.
    【详解】解:过点作,垂足为.
    由题意得,,,
    在中,.
    在中,.

    ∵,
    ∴,
    ∴.
    答:新生物处到皮肤的距离约为.
    【点睛】本题主要考查了解直角三角形的应用,构造直角三角形,通过三角函数求解线段是求解本题的关键.
    16.的长为
    【分析】本题考查的是解直角三角形的实际应用,先求解,再求解,从而可得答案;
    【详解】解:∵,,;
    ∴,

    ∴,
    ∵,,
    ∴,
    ∴;
    ∴的长为;
    17.乾元塔的高度约为米
    【分析】本题考查解直角三角形的应用,设平移后得到,延长交于点,设,分别解,表示出的长,列出方程进行求解即可.
    【详解】解:设平移后得到,延长交于点,则:,,,
    设,则:,
    在中,,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴;
    答:乾元塔的高度约为米.
    18.任务一:见解析;任务二:
    【分析】本题考查尺规作图,弧、弦、圆心角的关系,旋转的性质.利用数形结合的思想是解题关键.
    任务一:根据操作步骤作出,再根据弧、弦、圆心角的关系,分别作出,即得出,最后顺次连接即可;
    任务二:由旋转的性质可知,即得出,即此时点所在位置的坐标为.
    【详解】解:任务一:如图,正六边形即为所作;
    任务二:如图,
    由旋转可知,
    ∴,
    ∴.
    故答案为:.
    19.
    【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点作于G,连接,则四边形是矩形,可得,,再证明四边形是矩形,则,,进一步证明三点共线,得到;设,解得到;解得到;则,解得,即,则.
    【详解】解:如图所示,过点作于G,连接,则四边形是矩形,
    ∴,,
    ∵,
    ∴,
    由题意可得,
    ∴,
    ∴四边形是矩形,
    ∴,,
    ∴,
    ∴三点共线,
    ∴;
    设,
    在中,,

    ∴;
    在中,,

    ∴;
    ∴,
    解得,
    ∴,
    ∴,
    ∴风电塔筒的高度约为.
    题号
    1
    2
    3
    4
    5
    6




    答案
    D
    C
    B
    A
    A
    D




    相关试卷

    专题01数与式-三年(2022-2024)中考数学真题分项汇编(甘肃专用):

    这是一份专题01数与式-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题07统计与概率-三年(2022-2024)中考数学真题分项汇编(甘肃专用):

    这是一份专题07统计与概率-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题05图形的性质解答题-三年(2022-2024)中考数学真题分项汇编(甘肃专用):

    这是一份专题05图形的性质解答题-三年(2022-2024)中考数学真题分项汇编(甘肃专用),共48页。试卷主要包含了解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map