所属成套资源:沪教版数学七年级上册期末复习特训 (2份,原卷版+解析版)
沪教版数学七年级上册期末复习特训06 期末历年选填压轴题(第9-11章)(2份,原卷版+解析版)
展开
这是一份沪教版数学七年级上册期末复习特训06 期末历年选填压轴题(第9-11章)(2份,原卷版+解析版),文件包含沪教版数学七年级上册期末复习特训06期末历年选填压轴题第9-11章原卷版doc、沪教版数学七年级上册期末复习特训06期末历年选填压轴题第9-11章解析版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
1.(2020·上海嘉定·七年级期末)如图,在正方形ABCD中,点M是边CD的中点,那么正方形ABCD绕点M至少旋转_________度与它本身重合.
【答案】360
【分析】根据旋转对称图形的定义即可得.
【解析】点M是边CD的中点,不是正方形ABCD的中心,
正方形ABCD绕点M至少旋转360度才能与它本身重合,
故答案为:360.
【点睛】本题考查了旋转对称图形,掌握理解定义是解题关键.
2.(2020·上海松江·七年级期末)如图,在的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的为格点三角形,在图中最多能画出______个不同的格点三角形与成轴对称.
【答案】5
【分析】画出所有与成轴对称的三角形.
【解析】解:如图所示:
和对称,
和对称,
和对称,
和对称,
和对称,
故答案是:5.
【点睛】本题考查轴对称图形,解题的关键是掌握画轴对称图形的方法.
3.(2018·上海市延安初级中学七年级期末)已知,那么的值等于___________.
【答案】
【分析】由得到a+,再将化成含的形式,再代入计算即可.
【解析】∵,
∴,即=5,
∴===.
故答案为:.
【点睛】考查了分式的化简求值,解题关键是由得到a+和把变形成含的形式.
4.(2019·上海·上外附中七年级期末)若表示一个关于的多项式,除以整式,所得的商式和余式均为同一个多项式中的系数均为整数,则余式_____________.
【答案】x+1
【分析】由题意得,f(x)=g(x)h(x)+h(x)=h(x)[g(x)+1],又因为=(x+1)(x2+x+2) ,这两个式子比较讨论即可得到答案.
【解析】解:由题意得,f(x)=g(x)h(x)+h(x)=h(x)[g(x)+1] ①
又∵=(x+1)(x2+x+2) ②
比较①、②可知,有下述两种情况:
(1)h(x)=x+1,g(x)+1=x2+x+2,即h(x)=x+1,g(x)=x2+x+1;
(2)h(x)= x2+x+2,g(x)+1=x+1,即h(x)= x2+x+2,g(x)=x,这里余式h(x)的次数大于除式g(x)的次数,故不合题意,
∴只有(1)成立,
故答案为x+1.
【点睛】此题主要考查了整式的除法及因式分解,正确地将进行因式分解是解决问题的关键.
5.(2020·上海市川沙中学南校七年级期末)长为5,宽为的长方形纸片(),如图那样翻折,剪下一个边长等于长方形宽度的正方形(成为第一次操作);再把剩下的长方形如图那样翻折,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);若在第3次操作后,剩下的图形为正方形,则的值为__________.
【答案】3或
【分析】先根据题意可知:当<a<20时,第一次操作后剩下的矩形的长为a、宽为5-a,第二次操作时正方形的边长为5-a,第二次操作以后剩下的矩形的两边分别为5-a、2a-5,然后分别从5-a>2a-5与5-a<2a-5去分析且列出一元一次方程求解即可得出正确答案.
【解析】解:由题意可知:
当<a<5时,
第一次操作后剩下的矩形的长为a、宽为5-a,
∴第二次操作时剪下正方形的边长为5-a,
第二次操作以后剩下的矩形的两边分别为5-a、2a-5.
此时,分两种情况:
①如果5-a>2a-5,则a<,
即<a<,
那么第三次操作时正方形的边长为2a-5.
则2a-5=(5-a)-(2a-5),
解得a=3;
②如果5-a<2a-5,则a>,
即<a<20,
那么第三次操作时正方形的边长为5-a.
则5-a=(2a-5)-(5-a),
解得a=.
∴当n=3时,a的值为3或.
故答案为:3或.
【点睛】本题考查的知识点有折叠的性质、矩形的性质、分类讨论思想、数形结合思想、一元一次方程的应用、一元一次不等式的应用.解题关键是 掌握数形结合思想、分类讨论思想与方程思想的应用以及注意折叠中的对应关系.
6.(2020·上海浦东新·七年级期末)已知大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示. 大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为秒,两个正方形重叠部分的面积为平方厘米. 当时,小正方形平移的时间为_________秒.
【答案】1或6
【分析】小正方形的高不变,根据面积即可求出小正方形平移的距离.
【解析】S等于2时,重叠部分宽为2÷2=1,
①如图,小正方形平移距离为1(厘米);时间为:1÷1=1(秒)
②如图,小正方形平移距离为5+1=6(厘米).时间为:6÷1=6(秒)
故答案为:1或6.
【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.
7.(2020·上海宝山·七年级期末)如图,已知中,、、,将沿直线BC向右平移得到,点A、B、C的对应点分别是、、,连接.如果四边形的周长为19,那么四边形的面积与的面积的比值是________.
【答案】
【分析】过点A作BC上的高,根据平移的性质可得=,且,,然后根据已知周长可得=2,从而求出,然后根据梯形的面积公式和三角形的面积公式即可求出结论.
【解析】解:过点A作BC上的高
由平移的性质可得=,且,
∴四边形为梯形
∵四边形的周长为19,
∴+++AB=19
∴+5+6++4=19
∴2=4
∴=2
∴=2
∴=BC+=8
∴四边形的面积与的面积的比为
故答案为:.
【点睛】此题考查的是图形的平移问题,掌握平移的性质是解题关键.
8.(2021·上海宝山·七年级期末)已知,那么的值是_____________.
【答案】9
【分析】先表示出,的值,然后代入代数式降幂计算即可.
【解析】解:∵,
∴,,
∴
=
=
=
=
=9
故答案为:9.
【点睛】本题主要考查了多项式乘多项式和求代数式的值,利用整体思想降幂是解题的关键.
9.(2021·上海浦东新·七年级期末)如图,已知直角三角形,,厘米,厘米,厘米,将沿方向平移1.5厘米,线段在平移过程中所形成图形的面积为__________平方厘米.
【答案】6
【分析】先确定BC平移后的图形是平行四边形,然后再确定平行四边的底和高,最后运用平行四边形的面积公式计算即可.
【解析】解:如图:线段在平移过程中所形成图形为平行四边形且底CE=1.5cm,高DF=AB=4cm,
所以线段在平移过程中所形成图形的面积为CE·DF=1.5×4=6cm2.
故答案为6.
【点睛】本题考查了平移的性质,根据平移的性质确定平行四边形的底和高成为解答本题的关键.
10.(2022·上海·七年级专题练习)如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为a2(a>1).将正方形ABCD在数轴上水平移动,移动后的正方形记为A′B′C′D′,点A、B、C、D的对应点分别为A′、B′、C′、D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分图形的面积记为S.当S=a时,数轴上点A′表示的数是_____.(用含a的代数式表示)
【答案】﹣a或a﹣2
【分析】根据正方形的面积可得边长进而可以表示点A′表示的数.
【解析】∵正方形ABCD的面积为a2(a>1).
∴边长为a,
当S=a时,分两种情况:
若正方形ABCD向左平移,如图1,
A′B′=AB=BC=a,
A′B=1,
∴AA′=AB﹣A′B=a﹣1,
∴OA′=OA+AA′=1+a﹣1=a,
∴数轴上点A′表示的数为﹣a;
如正方形ABCD向右平移,如图2,
AB′=1,AA′=a﹣1,
∴OA′=(a﹣1)﹣1=a﹣2
∴数轴上点A′表示的数为a﹣2.
综上所述,数轴上点A′表示的数为﹣a或a﹣2.
【点睛】本题考查了实数与数轴,解决本题的关键是根据正方形平移后用代数式表示线段的长度.
11.(2019·上海浦东新·七年级期末)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,且AC在直线1上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,…,按此规律继续旋转,得到点P2018为止,则AP2018=___.
【答案】8073
【分析】观察不难发现,每旋转3次为一个循环组依次循环,用2018除以3求出循环组数,然后列式计算即可得解.
【解析】∵Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,
∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=5;
将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=5+4=9;
将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=5+4+3=12;
又∵2018÷3=672…2,
∴AP2018=672×12+(5+4)=8064+9=8073.
故答案为8073.
【点睛】本题考查了旋转的性质及图形的规律问题,得到AP的长度依次增加5,4,3,且三次一循环是解题的关键.
12.(2021·上海黄浦·七年级期末)如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.
【答案】25°
【分析】利用翻折变换的性质即可解决.
【解析】解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,
∵∠EF+∠AEF+∠EC+∠BEC=180°,
∴∠EF+∠AEF=50°,
∴∠AEF=25°,
故答案为:25°.
【点睛】本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.
13.(2021·上海普陀·七年级期末)如图,三角形ABC是直角三角形,∠C=90°,∠B=60°,AB=6,如果将三角形ABC绕着点B旋转(0°<<180°),使得点A恰好落在直线BC上,点A的对应点记作点D,弧AD是点A旋转时运动的路径,那么弧AD的长是____________.(结果保留)
【答案】2或4
【分析】分当△ABC绕点B顺时针旋转60°时,点A与重合,当△ABC绕点B逆时针旋转120°时,点A与重合,两种情况讨论求解即可.
【解析】解:如图所示,
∵∠ABC=60°,
∴,
∴当△ABC绕点B顺时针旋转60°时,点A与重合,当△ABC绕点B逆时针旋转120°时,点A与重合,
∴,,
故答案为:或.
【点睛】本题主要考查了求弧长,解题的关键在于能够熟练掌握弧长公式.
14.(2022·上海浦东新·七年级期末)如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是__________时,图形是一个轴对称图形.
【答案】
【解析】∵当图形是一个轴对称图形,则必须满足DG=CG=EC,长BC=a,宽AB=b,(b
相关试卷
这是一份沪教版七年级数学上册特训06期末历年选填压轴题(第9-11章)(原卷版+解析),共35页。试卷主要包含了填空题,单选题等内容,欢迎下载使用。
这是一份沪教版七年级数学上册特训05期末历年解答压轴题(第9-11章)(原卷版+解析),共83页。试卷主要包含了解答题,三步综合起来,.等内容,欢迎下载使用。
这是一份沪教版七年级数学上册特训05期末历年解答压轴题(第9-11章)(原卷版+解析),共83页。试卷主要包含了解答题,三步综合起来,.等内容,欢迎下载使用。