


【TDA】清华大学全国中学生标准学术能力诊断测试(TDA)2024年高三上学期12月测试数学试卷+答案
展开
这是一份【TDA】清华大学全国中学生标准学术能力诊断测试(TDA)2024年高三上学期12月测试数学试卷+答案,共11页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
标准学术能力诊断性测试 2024 年 12 月测试
数学试卷
本试卷共 150 分
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是
符合题目要求的.
1 . 已知集合P = {1, 2,3, 4}, Q = {−2, 2} ,下列结论成立的是
A .Q ∈ P B .P Q = P
C .P Q = Q D .P Q = {2}
2 . 已知a ∈ R ,i 为虚数单位,若复数(2 + i)(a+ i) 的实部与虚部相等,则 a =
A . −3 B . −2 C .2 D .3
3 . 已知sin (α+ β) = 2sinαsin β, tanαtan β = −2 ,则tan (α+ β) =
A . − B . C . −2 D . 2
4 . 斜率为 1 的直线l 经过(1, 0)点,且与抛物线y2 = 4x 交于A, B两点,则AB =
A .4 B .4 2 C .8 D .8 2
5 . 已知P(A) 、P (B) 分别表示随机事件A 、B发生的概率,则1− P(A B) 是下列哪个事件的
概率
A .事件A 、B同时发生 B .事件A 、B至少有一个发生
C .事件A 、B都不发生 D .事件A 、B至多有一个发生
6 . 已知0 < a x ,求实数a 的取值范围.
19 .(17 分)在直角坐标平面xOy 内,对于向量m = (x, y),记 m = x + y .设a, b, c 为直角坐 标平面xOy 内的向量,a = (1,1) .
a − b
;
(1)若b = (−1, 2) ,求
平均作业时长 n (单位:小时)
[1,1.5)
[1.5, 2)
[2, 2.5)
[2.5,3)
[3,3.5)
学业成绩优秀:90 ≤ m≤100
1
14
37
43
5
学业成绩不优秀:0 ≤ m< 90
136
137
102
18
7
(2)设b = (−1, −1),若
(3)若
b = c = 2,b . c =
c − a
+
c− b
≤ 26 + 23 .
= 4 ,求
c
的最大值;
2 ,求证: 3 − 3 ≤ b+c − 3a
标准学术能力诊断性测试 2024 年 12 月测试
数学 参考答案
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是
符合题目要求的.
二、多项选择题: 本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有多项符合
题目要求.全部选对的得 6 分,部分选对但不全的得 3 分,有错选的得 0 分.
三、填空题:本题共 3 小题,每小题 5 分,共 15 分.
12 . 13 . 或 14 .(−∞,0]
四、解答题:本题共 5 小题,共 77 分.解答应写出文字说明、证明过程或演算步骤.
15 .(13 分)
解:(1)S3 = 3a2 = − 15 ,所以a2 =−5 ······································································2 分
因为a1 = −7 ,所以公差d = 2 ······································································4 分
得 an = −7 + 2 (n −1) = 2n −9 ·······································································6 分
(2)因为对任意n ∈N* ,都有 Sn ≥ S7 ,
所以S8 ≥ S7 , S6 ≥ S7 ,得 a8 ≥ 0, a7 ≤ 0 ··························································2 分
由(1)知 a2 =−5 ,所以a8 = a2 + 6d = −5 + 6d ≥ 0, a7 = −5 + 5d ≤ 0 ·················5 分
得 ≤ d ≤1 ······························································································7 分
16 .(15 分)
解:(1)因为AB CD , AB 不在平面PCD 内,所以AB 平面PCD ··························2 分
因为平面ABE 与平面PCD 相交于EF ,所以 AB EF ····································4 分
因为EF 不在平面ABCD 内,所以EF 平面 ABCD ·······································6 分
(2)取CD 中点H ,因为 BC = CD = 2,上BCD = 60,
所以BH 丄 CD, BH = 3 ············································································1 分
1
2
3
4
5
6
7
8
D
D
A
C
C
A
C
A
9
10
11
CD
AB
ABC
因为PD 丄平面ABCD ,所以 PD 丄 BH ··························3 分
得BH 丄平面PCD ·······················································5 分
H
所以上BEH 即是直线BE 与平面PCD 所成角 ·····················7 分
因为 , DH = 1 ,所以EH = ·i3 , 所以tan 上BEH = = 1 ,得上BEH = 45O,
所以直线BE 与平面PCD 所成角的大小为45O ·················································9 分
17 .(15 分)
解:(1)2×2列联表数据如下:
································································2 分
≈ 83.3 ·························································4 分
因为x2 ≥ 3.841,所以有 95%的把握认为学业成绩优秀与日均作业时长不小于 2 小时且小
于 3 小时有关 ····························································································6 分
(2)设P(A) = x ,则P(A) = 1 − x ,
因为P(B A) = 0.25 ,所以 P(B A) = 0.25P(A) = 0.25 (1− x) ························2 分
因为P(B) = P (B A)+ P(B A) = 0.2 ,所以 P(A B) = 0.25x − 0.05 ···········4 分
因为 = 0.2 ,所以P(B A) = 0.2P(B A),
得P(B A) = 0.2P(B A) ········································································5 分
因为P(A) = P (B A)+ P(B A) = x ,所以P ····························7 分
由 0.25x − 0.05 = ,得x = 0.6 ,所以P = 0.6 ··········································9 分
18 .(17 分)
解:(1)函数的定义域为(0, +∞ ) ··············································································1 分
因为 ···················································································3 分
时长n
2 ≤ n < 3
其他
总计
优秀
80
20
100
不优秀
120
280
400
总计
200
300
500
当x ∈ (0,1)时, f ’(x) < 0;当 x ∈ (1, +∞) 时,f ’(x) > 0,
所以函数y = f (x) 在区间(0,1] 上递减 ···························································5 分
(2)由已知g (x) = alnx − a ln (2 − x) ,定义域为(0, 2) ··········································1 分
设x ∈ (0, 2) ,则 g (2 − x) = a ln (2 − x)− alnx = −g (x),
所以函数y = g (x) 的图象关于(1, 0) 对称 ························································3 分
①当a < 2 时,因为x > 0, x + x ≥ 2 ,所以 h (x) = x |(a −|(x + x, , < 0 ···············2 分
得y = h (x)在(0,1)上递减,
因为h (1) = 0 ,所以当且仅当x ∈ (0,1)时, h (x) > 0 ,即 f (x) > x ····················4 分
②当a = 2, x ∈ 时,h’
所以y = h (x)在(0,1)上递减,
因为h (1) = 0 ,所以当且仅当x ∈ (0,1)时, h (x) > 0 ,即 f (x) > x ····················6 分
③当a > 2 时,令h’(x) = 0 ,得x = , ∈ (0,1),
当 时,h’ > 0 ,函数y = h 在((| ,1,) 上递增, 所以当 = 0 ,即f < x0 ,
1 ’ 1 ( ( 1 ))
得 a > 2 不满足题意 ·····················································································8 分
综上所述,满足题意的实数a 的范围为(−∞,2] ·················································9 分
19 .(17 分)
解:(1)a −b = (2, −1) ,所以 a − b = 3 ···································································3 分
(2)设c = (x, y ),则 x −1 + x +1 + y −1 + y +1 = 4 ············································2 分
因为 x −1 + x +1 ≥ (x −1)− (x +1) = 2 ,当 −1 ≤ x ≤1时取等, 因为 y −1 + y +1 ≥ (y −1)− (y +1) = 2 ,当 −1≤ y ≤1时取等,
x −1 + x +1 + y −1 + y +1 = 4等价于 −1 ≤ x ≤1且 −1≤ y ≤1 4 分
→ \l "bkmark1" 2
得 c = x2 + y2 ≤ 2 , c 的最大值为 ·2 ,当 x =±1 且y =±1时取得 6 分
由 = 2 知,
··················································2 分
设 csθ − sinθ− , 则y = g 为周期,
π π ( π ) 「 3 1 7
当 − 3 ≤ θ ≤ 6 时,g (θ) = csθ − sinθ = 2 cs |(θ + 4 , ∈ |L 2 − 2 , 2」| ,
6 3 ( 4 , L 2 2 」
π 5π ( π ) 「 1 7
当 π ≤ θ ≤ π 时,g (θ) = csθ + sinθ −1 = sin (|θ + π ) −1∈「|1 −17| ,
当 3 ≤θ ≤ 6 时,g (θ) = sinθ − csθ = 2 sin |(θ − 4 , ∈ |L 2 − 2 , 2」| ,
6 3 ( 4 , L 2 2 」,
当 5π ≤ θ ≤ 5π 时,g (θ) = 1− csθ − sinθ = 1 − sin (|θ + π ) ∈「|1 +17|
综上所述,当θ ∈ ································6 分
因为y = g (θ) 以 2π为周期,所以当θ ∈R 时,g
b + c − 3a
得
= 2 3g (θ) ∈ 3 − 3, 2 6 + 23 ,
所以3 − 3 ≤
≤ 2 6 + 2 3 ························································8 分
b + c − 3a
相关试卷
这是一份【TDA】清华大学全国中学生标准学术能力诊断测试(TDA)2024年高三上学期12月测试数学试卷+答案,共6页。
这是一份全国中学生标准学术能力诊断性测试2024-2025学年高三上学期12月测试数学试卷,共6页。
这是一份全国中学生标准学术能力诊断性测试2024年高三上学期12月测试数学试卷+答案,共6页。