所属成套资源:中考数学三轮冲刺课件
中考数学复习课件-中考复习(函数)-中考数学三轮冲刺课件
展开
这是一份中考数学复习课件-中考复习(函数)-中考数学三轮冲刺课件,共27页。PPT课件主要包含了Y0·,反比例函数,二次函数等内容,欢迎下载使用。
3.函数:有的放矢(课标要求)
(1)探索具体问题中的数量关系和变化规律[参见例8] (2)函数 ①通过简单实例,了解常量、变量的意义。 ②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。
③能结合图象对简单实际问题中的函数关系进行分析。[参见例9] ④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。 ⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10] ⑥结合对函数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11]
(3)一次函数 ①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。 ②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx十b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况)。 ③理解正比例函数。 ④能根据一次函数的图象求二元一次方程组的近似解。 ⑤能用一次函数解决实际问题。
(4)反比例函数 ①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。 ②能画出反比例函数的图象,根据图象和解析表达式y=k/x(k≠)探索并理解其性质(k>0或k<0时,图象的变化)。 ③能用反比例函数解决某些实际问题。
(5)二次函数 ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。 ④会利用二次函数的图象求一元二次方程的近似解。
一、常量与变量 1.常量与变量: 在某一变化过程中,不断变化的数量叫变量.在某一变化过程中保持不变的量叫常量. 2.变量之间的关系: 在某一变化中,如果一个变量 Y随着另一个变量 X的变化而不断变化,那么X叫自变量,Y叫因变量.
二、函数1.一般地.在某个变化中,有两个变量x和y,如果给定一个x的值,相应地就确定了y的一个值,那么我们称y是x的函数,其中x叫自变量,y叫因变量.2.要点:①是一个变化的过程;②有两个变量;③这里的函数是一个单值函数;④⑤函数的实质是两个变量之间的关系.
三、函数表示方法解析法:用一个式子表示函数关系;列表法:用列表的方法表示函数关系;图象法:用图象的方法表示函数关系.
变量间关系简捷明了,便于分析计算.
需要通过计算,才能得到所需结果.
能直接得到某些具体的对应值
不能反映函数整体的变化情况
直观表示了变量间变化过程和变化趋势.
函数值只能是近似值..
表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表格的基础上对函数的总体概括和形象化的表达.
四、一次函数1.若两个变量x,y的关系可以表示成y=kx+b(k,b是常数,k≠0)的形式,则称y是做x的一次函数 (x为自变量,y为因变量).2.特别地,当常数b=0时,一次函数y=kx+b(k≠0)就成为:y=kx(k是常数,k≠0),称y是x的正比例函数.3.一次函数与正比例函数之间的关系:正比例函数是当b=0时的特殊的一次函数.
五、一次函数的图象与性质
2.一次函数y=kx+b(k≠0)的图象的位置及增减性:
1.一次函数y=kx+b(k≠0)的图象是一条直线,称直线y=kx+b.
六、一次函数,一元一次方程,一元一次不等式
(1)当y=0时,为一元一次方程kx+b=0,这时方程的解为:
(2)当y>0时,为一元一次不等式kx+b>0;当y
相关课件
这是一份中考数学复习课件实数部分(3)-中考数学三轮冲刺课件,共17页。PPT课件主要包含了考点聚焦,课前热身,典型例题解析,方法小结,课时训练等内容,欢迎下载使用。
这是一份中考数学复习课件实数部分(2)-中考数学三轮冲刺课件,共17页。PPT课件主要包含了考点聚焦,课前热身,4×1011,735×105,17×105,6×104秒,典型例题解析,方法小结,课时训练等内容,欢迎下载使用。
这是一份中考数学复习课件实数部分(1)-中考数学三轮冲刺课件,共14页。PPT课件主要包含了考点聚焦,实数的分类,正整数,负整数,负分数,正分数,正无理数,负无理数,有限小数或循环小数,无限不循环小数等内容,欢迎下载使用。