所属成套资源:新高考数学一轮复习考点分类讲与练 (2份,原卷版+解析版)
新高考数学一轮复习考点分类讲与练第20讲 利用导数研究函数的单调性(2份,原卷版+解析版)
展开
这是一份新高考数学一轮复习考点分类讲与练第20讲 利用导数研究函数的单调性(2份,原卷版+解析版),文件包含新高考数学一轮复习考点分类讲与练第20讲利用导数研究函数的单调性原卷版doc、新高考数学一轮复习考点分类讲与练第20讲利用导数研究函数的单调性解析版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
1. 函数的单调性
设函数y=f(x)在某个区间内可导,若f′(x) > 0,则f(x)为增函数,若f′(x) < 0,则f(x)为减函数.
2. 求可导函数f(x)单调区间的步骤:
(1) 确定f(x)的 定义域 ;
(2) 求导数f′(x);
(3) 令f′(x) > 0(或f′(x) < 0),解出相应的x的取值范围;
(4) 当 f′(x)>0 时,f(x)在相应区间上是增函数,当 f′(x)0(或f′(x)0,得x> eq \f(\r(3),3)或x0时,h′(x)>0,所以函数h(x)在区间(0,+∞)上单调递增,符合题意;对于D,m′(x)= eq \f(1-x,x)(x>0).令m′(x)>0,得00),
所以f′(x)=1- eq \f(2,x2)+ eq \f(1,x)= eq \f(x2+x-2,x2)(x>0).
令f′(x)=0,解得x=-2(舍去)或x=1,
所以当x∈(0,1)时,f′(x)0,
故函数f(x)的单调减区间为(0,1),单调增区间为(1,+∞).
变式2、(1) 函数f(x)=eq \f(x-3,e2x)的减区间是( )
A. (-∞,2) B. (2,+∞)
C. eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,2),+∞)) D. (3,+∞)
【答案】C
【解析】 因为f(x)=eq \f(x-3,e2x),所以f′(x)=eq \f(7-2x,e2x),令f′(x)0,得csx>-eq \f(1,2),即2kπ-eq \f(2π,3)
相关试卷
这是一份新高考数学一轮复习精品讲练测第3章第08讲 利用导数研究方程的根(2份,原卷版+解析版),文件包含新高考数学一轮复习精品讲练测第3章第08讲利用导数研究方程的根教师版doc、新高考数学一轮复习精品讲练测第3章第08讲利用导数研究方程的根学生版doc等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
这是一份高考数学第一轮复习导学案(新高考)第20讲利用导数研究函数的单调性(原卷版+解析),共18页。试卷主要包含了 函数的单调性, 求可导函数f单调区间的步骤, 常用结论,1e0等内容,欢迎下载使用。
这是一份高考数学一轮复习高频考点精讲精练(新高考专用)第07讲利用导数研究双变量问题(高频精讲)(原卷版+解析),共50页。试卷主要包含了导数中求解双变量问题的一般步骤,破解双参数不等式的方法等内容,欢迎下载使用。