所属成套资源:人教A版高中数学(必修第二册)同步分层练习 (2份,原卷版+解析版)
人教A版高中数学(必修第二册)同步分层练习第10章 概率 章末检测(2份,原卷版+解析版)
展开
这是一份人教A版高中数学(必修第二册)同步分层练习第10章 概率 章末检测(2份,原卷版+解析版),文件包含人教A版高中数学必修第二册同步分层练习第10章概率章末检测原卷版doc、人教A版高中数学必修第二册同步分层练习第10章概率章末检测解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
班级: 姓名: 日期: 第十章 概率 章末综合测试(时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列事件属于古典概型的是( )A.任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B.篮球运动员投篮,观察他是否投中C.测量一杯水分子的个数D.在4个完全相同的小球中任取1个2.下列命题:①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中正确命题的个数是( )A.1 B.2 C.3 D.43.从1,2,3,4,5这五个数中任取两个不同的数,则这两个数都是奇数的概率是( )A.0.1 B.0.2 C.0.3 D.0.64.(2022·广西平果二中高一期中)一道竞赛题,,,三人可解出的概率依次为,,,若三人独立解答,则仅有1人解出的概率为( )A. B. C. D.15.孪生素数(素数是只有1和自身因数的正整数)猜想是希尔伯特在1900年正式提出的23个问题之一,具体为:存在无穷多个素数,使得是素数,素数对称为孪生素数,在不超过20的素数中随机选取2个不同的数,其中能够构成孪生素数的概率是( )A. B. C. D.6.2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受吉祥物爱好者的喜爱,“冰墩墩”和“雪容融”将中国文化符号和冰雪运动完美融合,承载了新时代中国的形象和梦想.若某个吉祥物爱好者从装有3个“冰墩墩”和3个“雪容融”的6个盲盒的袋子中任取2个盲盒,则恰好抽到1个“冰墩墩”和1个“雪容融”的概率是( )A. B. C. D.7.(2022·天津市蓟州区擂鼓台中学高一月考)甲、乙两人独立地破译一份密码,已知各人能破译的概率分别是和,则两人成功破译的概率为( )A. B. C. D.8.生物的性状是由遗传因子确定的,遗传因子在体细胞内成对存在,一个来自父本,一个来自母本,且等可能随机组合.豌豆子叶的颜色是由显性因子D(表现为黄色),隐性因子d(表现为绿色)决定的,当显性因子与隐形因子结合时,表现显性因子的性状,即DD,Dd都表现为黄色;当两个隐形因子结合时,才表现隐形因子的性状,即dd表现为绿色.已知父本和母本确定子叶颜色的遗传因子都是Dd,不考虑基因突变,从子一代中随机选择两粒豌豆进行杂交,则选择的豌豆的子叶都是黄色且子二代豌豆的子叶是绿色的概率为( )A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符号题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.(2022·辽宁抚顺市第六中学高一期末)某人在打靶中,连续射击次,至多有一次中靶的互斥不对立事件是( )A.至少有一次中靶 B.三次都中靶 C.恰有两次中靶 D.至少两次中靶10.(2022·辽宁建平县实验中学高一月考)某社团开展“建党100周年主题活动——学党史知识竞赛”,甲、乙两人能得满分的概率分别为,,两人能否获得满分相互独立,则下列说法错误的是:( )A.两人均获得满分的概率为 B.两人至少一人获得满分的概率为C.两人恰好只有甲获得满分的概率为 D.两人至多一人获得满分的概率为11.(2022·河北邯郸高一期末)已知甲罐中有2个大小、质地完全一样的小球,标号为1,2,乙罐中有4个大小、质地完全一样的小球,标号为1,2,3,4,现从甲罐、乙罐中分别随机抽取1个小球,记样本空间为,事件为“抽取的两个小球标号之和大于4”,事件为“抽取的两个小球标号之积小于5”,则下列结论正确的是( )A.与是互斥事件 B.与不是对立事件C. D.12.(2022·广东珠海市第二中学高一期中 ) 以下对各事件发生的概率判断正确的是( ).A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是B.每个大于2的偶数都可以表示为两个素数的和,例如,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为C.将一个质地均匀的正方体骰子(每个面上分别写有数字l,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是三、填空题:本题共4小题,每小题5分,共20分.13.(2022·山东高青县第一中学高一期中 )从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的样本点个数为___________.14.(2022·黑龙江哈师大附中高一期中)若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为______15.(2022·湖北武汉市第二十三中学高一期中 )现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.16.某电视台举办知识竞答闯关比赛,每位选手闯关时需要回答三个问题.第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得0分;第三个问题回答正确得30分,回答错误得分.规定,每位选手回答这三个问题的总得分不低于30分就算闯关成功.若某位选手回答前两个问题正确的概率都是,回答第三个问题正确的概率是,且各题回答正确与否相互之间没有影响.则该选手仅回答正确两个问题的概率是______;该选手闯关成功的概率是______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某居民小区有两个相互独立的安全防范系统,简称系统A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(2)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.18.(12分)当顾客在超市排队结账时,“传统排队法”中顾客会选他们认为最短的队伍结账离开,某数学兴趣小组却认为最好的办法是如图(1)所示地排成一条长队,然后排头的人依次进入空闲的收银台结账,从而让所有的人都能快速离开,该兴趣小组称这种方法为“长队法”.为了检验他们的想法,该兴趣小组在相同条件下做了两种不同排队方法的实验.“传统排队法”的顾客等待平均时间为5分39秒,图(2)为“长队法”顾客等待时间柱状图.(1)根据柱状图估算使用“长队法”的100名顾客平均等待时间,并说明选择哪种排队法更适合;(2)为进一步分析“长队法”的可行性,对使用“长队法”的顾客进行满意度问卷调查,发现等待时间为[8,10)的顾客中有5人满意,等待时间为[10,12]的顾客中仅有1人满意,在这6人中随机选2人发放安慰奖,求获得安慰奖的都是等待时间在[8,10)顾客的概率.19.(12分)(2022·广东江门高一期末)已知关于的二次函数,令集合,,若分别从集合、中随机抽取一个数和,构成数对.(1)列举数对的样本空间;(2)记事件为“二次函数的单调递增区间为”,求事件的概率;(3)记事件为“关于的一元二次方程有4个零点”,求事件的概率.20.(12分)(2022·天津市蓟州区擂鼓台中学高一月考)乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为,乙每轮猜对的概率为·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求(1)“星队”在两轮活动中猜对2个成语的概率;(2) “星队”在两轮活动中猜对3个成语的概率;(3) “星队”在两轮活动至少中猜对1个成语的概率;21.(12分)(2022·安徽定远县育才学校高一期末)如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数.(3)从成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.22.(12分)(2022·山东省潍坊第四中学高一期中)数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.