2025届高考数学二轮专题复习与测试专题2圆锥曲线的定义方程与性质课件
展开
这是一份2025届高考数学二轮专题复习与测试专题2圆锥曲线的定义方程与性质课件,共60页。
小题考法1 圆锥曲线的定义与标准方程[核心提炼]1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(00,且m≠n),双曲线方程常设为mx2-ny2=1(mn>0).
(2)求圆锥曲线标准方程需要注意的点①双曲线的定义中注意“绝对值”.②椭圆与双曲线方程中a,b,c之间的关系不要弄混,椭圆方程中a2=b2+c2,双曲线方程中c2=a2+b2.③确定圆锥曲线方程时需注意焦点位置.
2.如图,菱形架ABCD是一种作图工具,由四根长度均为4的直杆用铰链首尾连接而成.已知A,C可在带滑槽的直杆l上滑动;另一根带滑槽的直杆DH的长度为4,且一端记为H,另一端用铰链连接在D处,上述两根带滑槽直杆的交点P处有一栓子(可在带滑槽的直杆上滑动).若将H,B固定在桌面上,且两点之间距离为2,转动杆HD,则点P与点B距离的最大值为________.
解析:连接BD,PB,BH,因为四边形ABCD为菱形,所以直线AC为线段BD的垂直平分线,故|PB|=|PD|,所以|PH|+|PB|=|PH|+|PD|=|DH|=4>|BH|=2,故点P的轨迹是以B,H为焦点的椭圆,可得2a=4,2c=2,即a=2,c=1,所以点P与点B的距离|PB|的最大值为a+c=3.
小题考法3 抛物线的几何性质[核心提炼]抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是直线AB的倾斜角,则:
利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来确定已知量与p的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.
(多选)(2024·惠州调研)设抛物线C:y2=8x的焦点为F,准线为l,点M为C上一动点,E(3,1)为定点,则下列结论正确的是( )A.准线l的方程是x=-2B.|ME|-|MF|的最大值为2C.|ME|+|MF|的最小值为7D.以线段MF为直径的圆与y轴相切
(2)用“点差法”求解中点弦问题的步骤
相关课件
这是一份备战2025年高考数学二轮复习课件专题6解析几何第2讲圆锥曲线的定义、方程与性质,共32页。PPT课件主要包含了ABD,ACD,考向2离心率问题,BCD等内容,欢迎下载使用。
这是一份统考版2024高考数学二轮专题复习专题五解析几何第2讲圆锥曲线的定义方程与性质课件理,共49页。PPT课件主要包含了考点一,考点二,考点三,答案B,答案C,答案A,答案AC,答案D,-p2,x1+x2+p等内容,欢迎下载使用。
这是一份新高考数学二轮复习专题六解析几何第2讲圆锥曲线的定义、方程与性质课件,共60页。PPT课件主要包含了必备知识•精要梳理,关键能力•学案突破,答案A,对点练1,答案D,对点练2,答案C,对点练3,答案B,对点练4等内容,欢迎下载使用。