年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年辽宁省凌源市高一上学期第三次月考数学检测试卷(附解析)

    2024-2025学年辽宁省凌源市高一上学期第三次月考数学检测试卷(附解析)第1页
    2024-2025学年辽宁省凌源市高一上学期第三次月考数学检测试卷(附解析)第2页
    2024-2025学年辽宁省凌源市高一上学期第三次月考数学检测试卷(附解析)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年辽宁省凌源市高一上学期第三次月考数学检测试卷(附解析)

    展开

    这是一份2024-2025学年辽宁省凌源市高一上学期第三次月考数学检测试卷(附解析),共8页。试卷主要包含了本试卷主要考试内容,若,,,则,若函数的值域为,则函数的值域为,若命题等内容,欢迎下载使用。
    注意事项:
    1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。
    4.本试卷主要考试内容:人教B版必修第一册第一章至必修第二册第四章4.1。
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.“”是“”的()
    A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
    2.已知为奇函数,当时,,则()
    A.7B.-1C.-7D.1
    3.已知函数,在下列区间中,一定包含零点的区间是()
    A.B.C.D.
    4.若函数(,且)的图像经过定点,则的坐标为()
    A.B.C.D.
    5.已知函数的图像如图所示,若在上单调递减,则的取值范围为()
    A.B.
    C.D.
    6.若,,,则()
    A.B.C.D.
    7.若对任意的,关于的不等式恒成立,则的最大值为()
    A.13B.12C.10D.9
    8.若函数的值域为,则函数的值域为()
    A.B.C.D.
    二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9.若命题:无理数的平方是无理数,则()
    A.是全称量词命题B.是存在量词命题
    C.为真命题D.有些无理数的平方不是无理数
    10.按复利计算利息的一种储蓄,本金为(单位:万元),每期利率为,本利和为(单位:万元),存期数为.已知甲按照这种储蓄存入了一笔本金,当存期数为2时,本利和为1.1万元,当存期数为4时,本利和为1.21万元,则()
    A.
    B.
    C.甲的本金为1万元
    D.当存期数为8时,甲的本利和超过1.44万元
    11.已知函数的定义域为,且为偶函数,是奇函数,则()
    A.B.
    C.D.
    三、填空题:本题共3小题,每小题5分,共15分.
    12.集合的真子集个数为__________.
    13.若函数的定义域为,则函数的定义域为_____.
    14.函数的零点最多有为__________.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15.(13分)(1)求值.
    (2)若,求的值.
    16.(15分)
    已知集合,,.
    (1)求;
    (2)若,求的取值范围.
    17.(15分)
    已知,.
    (1)求的最小值;
    (2)若,求的最小值.
    18.(17分)
    已知定义域为的奇函数的图像经过点.
    (1)求的解析式;
    (2)若,求的值;
    (3)证明.
    19.(17分)
    若函数的定义域与值域均为,则称为“闭区间同域函数”,称为的“同域闭区间”.
    (1)判断定义在上的函数是否是“闭区间同域函数”,并说明理由;
    (2)若是“闭区间同域函数”(且)的“同域闭区间”,求,;
    (3)若是“闭区间同域函数”的“同域闭区间”,求,.
    高一数学考答案
    1.B由“”不能推出“”,由“”可以推出“”,所以“”是“”的必要不充分条件.
    2.C由题意得.
    3.A由题意得,,,,所以一定包含零点的区间是.
    4.A令,则,所以的坐标为.
    5.B由图可知在,上单调递减,则或
    得或.
    6.D由题意得,,因为函数是减函数,所以.又,所以.故.
    7.C由,得对任意的恒成立.因为,当且仅当,即时,等号成立,所以,即的最大值为10.
    8.C令,得,,则,,,所以函数的值域为.
    9.AD由题意得是全称量词命题,:有些无理数的平方不是无理数,A,D正确,B错误.是无理数,但的平方不是无理数,为假命题,C错误.
    10.ACD由题意得,则解得
    因为,所以,A,C正确,B错误.
    当时,,D正确.
    11.ABD由是奇函数,得,即,A正确.
    易得,得,则的图像关于点对称,所以,C错误.
    由为偶函数,得,即,得,
    所以,B,D正确.
    12.7由题意得,则的真子集个数为.
    13.由题意得,得,则.
    14.3;的零点个数为函数的图像与直线的交点个数.的部分图像如图所示,当时,的零点个数最多,且最多为3.
    15.解:(1)原式.……6分
    (2)因为,……12分
    所以.……13分
    16.解:(1)由题意得,……1分
    由,……3分
    得,……4分
    所以.……6分
    (2)由(1)得.……7分
    当时,,得.……9分
    当时,或……11分
    解得或.……13分
    综上,的取值范围为.……15分
    17.解:(1)由题意得,……4分
    当且仅当,即时,等号成立.……5分
    故的最小值为3.……6分
    (2)由,得,……8分
    则,……12分
    当且仅当,即时,等号成立.……14分
    故的最小值为1.……15分
    18.(1)解:由题意得得……4分
    所以.……5分
    经检验为奇函数,故.……6分
    (2)解:由题意得,则,……8分
    所以.……10分
    (3)证明:易得在上单调递增,且的值域为.……11分
    由(2)可得
    ,……14分
    所以.……15分
    又在上单调递增,所以.……17分
    19.解:(1)不是“闭区间同域函数”.……1分
    理由如下:
    易得在上单调递增,则,……2分
    即的值域为,所以不是“闭区间同域函数”.……3分
    (2)当时,在上单调递减,则……4分
    该方程组无解.……5分
    当时,在上单调递增,则……6分
    解得……7分
    (3)由题意得图像的对称轴为直线.
    当时,在上单调递增,得
    则是方程的两个不相等的实根,……9分
    得,,不符合题意.……10分
    当时,在上单调递减,在上单调递增,.……11分
    ①当时,,不符合题意;……12分
    ②当时,,解得.……13分
    当时,在上单调递减,则
    两式相减得.由,得,则,即,……14分
    将,代入,得或1.……15分
    当时,,不符合题意;当时,,符合题意.……16分
    综上,,或,.……17分

    相关试卷

    2024-2025学年辽宁省高一上学期12月月考数学检测试卷(附解析):

    这是一份2024-2025学年辽宁省高一上学期12月月考数学检测试卷(附解析),共26页。

    2024-2025学年辽宁省沈阳市高一上学期第三次月考数学检测试卷(含解析):

    这是一份2024-2025学年辽宁省沈阳市高一上学期第三次月考数学检测试卷(含解析),共20页。

    2024-2025学年辽宁省沈阳市高一上学期第三次月考数学检测试卷(附解析):

    这是一份2024-2025学年辽宁省沈阳市高一上学期第三次月考数学检测试卷(附解析),共16页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map