搜索
    上传资料 赚现金
    英语朗读宝

    浙江省2023年中考数学一轮复习 相似三角形 练习题(含详解)

    浙江省2023年中考数学一轮复习 相似三角形 练习题(含详解)第1页
    浙江省2023年中考数学一轮复习 相似三角形 练习题(含详解)第2页
    浙江省2023年中考数学一轮复习 相似三角形 练习题(含详解)第3页
    还剩44页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省2023年中考数学一轮复习 相似三角形 练习题(含详解)

    展开

    这是一份浙江省2023年中考数学一轮复习 相似三角形 练习题(含详解),共47页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    一、单选题
    1.(2022·浙江温州·统考模拟预测)如果,那么下列比例式中正确的是( )
    A.B.C.D.
    2.(2022·浙江丽水·统考中考真题)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段,则线段的长是( )
    A.B.1C.D.2
    3.(2022·浙江杭州·一模)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为( )
    A.2B.3C.D.
    4.(2022·浙江绍兴·一模)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
    A.16B.18C.20D.24
    5.(2022·浙江金华·校联考一模)如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是( )
    A.△ADC∽△CFBB.AD=DF
    C.D.=
    6.(2022·浙江金华·统考中考真题)如图是一张矩形纸片,点E为中点,点F在上,把该纸片沿折叠,点A,B的对应点分别为与相交于点G,的延长线过点C.若,则的值为( )
    A.B.C.D.
    7.(2022·浙江绍兴·统考中考真题)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片,其中,,,,,则剪掉的两个直角三角形的斜边长不可能是( )
    A.B.C.10D.
    8.(2022·浙江舟山·中考真题)如图,在和中,,点A在边的中点上,若,,连结,则的长为( )
    A.B.C.4D.
    9.(2022·浙江衢州·统考中考真题)西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端(人眼)望点,使视线通过点,记人站立的位置为点,量出长,即可算得物高.令BG=x(m), EG=y(m),若a=30cm,b=60cm,AB=1.6m,则关于的函数表达式为( )
    A.B.C.D.
    10.(2022·浙江衢州·统考中考真题)如图,在中,.分别以点为圆心,大于的长为半径画弧,两弧相交于点,作直线分别交,于点.以为圆心,长为半径画弧,交于点,连结.则下列说法错误的是( )
    A.B.
    C.D.
    11.(2022·浙江宁波·模拟预测)如图,矩形ABCD被分割成4个小矩形,其中矩形AEPH~矩形HDFP~矩形PEBG,,AC交HG,EF于点M,Q,若要求的而积,需知道下列哪两个图形的面积之差( )
    A.矩形AEPH和矩形PEBGB.矩形HDFP和矩形AEPH
    C.矩形HDFP和矩形PEBGD.矩形HDFP和矩形PGCF
    12.(2022·浙江绍兴·模拟预测)如图,右边的“E”与左边的“E”是位似图形,A是位似中心,位似比为3:5.若,则的长为( )
    A.15B.30C.45D.60
    13.(2022·浙江温州·统考二模)如图,已知△ABC与△DEF是位似图形,O是位似中心,若OA=2OD,则△ABC与△DEF的周长之比是( )
    A.2:1B.3:1C.4:1D.6:1
    14.(2022·浙江杭州·统考一模)在平面直角坐标系中,已知点E(-6,2),F(-2,-2),以原点O为位似中心,位似比为,把△EFO缩小,则点F的对应点F′的坐标是( )
    A.(-1,-1)B.(1,1)C.(-4,-4)或(4,4)D.(-1,-1)或(1,1)
    二、填空题
    15.(2022·浙江绍兴·一模)已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.
    16.(2022·浙江宁波·统考一模)如图,在中,,点为中点,点在边上,,将沿折叠至,若,则______.
    17.(2022·浙江杭州·统考一模)如图,点是矩形边上一点,沿折叠,点恰好落在边上的点处,设,
    (1)若点恰为边的中点,则_________.
    (2)设,则关于的函数表达式是_________.
    18.(2022·浙江杭州·统考中考真题)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B=_________度;的值等于_________.
    19.(2022·浙江宁波·统考中考真题)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为时,的值为___________,点F的坐标为___________.
    20.(2022·浙江杭州·统考中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=_________m.
    21.(2022·浙江湖州·统考中考真题)如图,已知在△ABC中,D,E分别是AB,AC上的点,,.若DE=2,则BC的长是______.
    22.(2022·浙江衢州·统考中考真题)如图,在中,边在轴上,边交轴于点.反比例函数的图象恰好经过点,与边交于点.若,,,则=____.
    23.(2022·浙江绍兴·模拟预测)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为_____.
    24.(2022·浙江舟山·统考一模)如图,在直角坐标系中,OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与OAB的位似比为的位似图形OCD,则点C的坐标为 ___.
    三、解答题
    25.(2022·浙江丽水·统考中考真题)如图,在的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.
    (1)如图1,作一条线段,使它是向右平移一格后的图形;
    (2)如图2,作一个轴对称图形,使和是它的两条边;
    (3)如图3,作一个与相似的三角形,相似比不等于1.
    26.(2022·浙江湖州·统考一模)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.
    例2 如图,在中,分别是边的中点,相交于点,求证:,
    证明:连结.
    请根据教材提示,结合图①,写出完整的证明过程.
    结论应用:在中,对角线交于点,为边的中点,、交于点.
    (1)如图②,若为正方形,且,则的长为 .
    (2)如图③,连结交于点,若四边形的面积为,则的面积为 .
    27.(2022·浙江杭州·统考中考真题)如图,在ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BFED是平行四边形,.
    (1)若,求线段AD的长.
    (2)若的面积为1,求平行四边形BFED的面积.
    28.(2022·浙江湖州·统考中考真题)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D.
    (1)①求点A,B,C的坐标;
    ②求b,c的值.
    (2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
    29.(2022·浙江台州·统考中考真题)图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形各边上分别取点,,,,使,依次连接它们,得到四边形;再在四边形各边上分别取点,,,,使,依次连接它们,得到四边形;…如此继续下去,得到四条螺旋折线.
    图1
    (1)求证:四边形是正方形;
    (2)求的值;
    (3)请研究螺旋折线…中相邻线段之间的关系,写出一个正确结论并加以证明.
    30.(2022·浙江金华·统考中考真题)如图,在菱形中,,点E从点B出发沿折线向终点D运动.过点E作点E所在的边(或)的垂线,交菱形其它的边于点F,在的右侧作矩形.
    (1)如图1,点G在上.求证:.
    (2)若,当过中点时,求的长.
    (3)已知,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与相似(包括全等)?
    31.(2022·浙江舟山·中考真题)如图1.在正方形中,点F,H分别在边,上,连结,交于点E,已知.
    (1)线段与垂直吗?请说明理由.
    (2)如图2,过点A,H,F的圆交于点P,连结交于点K.求证:.
    (3)如图3,在(2)的条件下,当点K是线段的中点时,求的值.
    32.(2022·浙江衢州·统考二模)如图,点A,B是每个小正方形边长都为1的网格中的两格点,请仅用无刻度直尺按要求在网格中画出符合条件的图形.
    (1)在图①中画出一个以线段为边,面积为6的;
    (2)在图②中的线段上确定点P,使.
    参考答案:
    1.C
    【分析】根据比例的性质,“若,则ad=bc”,逐个判断即可得出答案.
    【详解】解:由比例的性质可得:
    A. ,3x=2y;
    B. ,xy=6;
    C. ,2x=3y;
    D. ,3x=2y.
    故选:C.
    【点睛】本题考查比例的性质,掌握“若,则ad=bc”是本题的解题关键.
    2.C
    【分析】过点作五条平行横线的垂线,交第三、四条直线,分别于、,根据题意得,然后利用平行线分线段成比例定理即可求解.
    【详解】解:过点作五条平行横线的垂线,交第三、四条直线,分别于、,
    根据题意得,
    ∵,
    ∴,
    又∵,

    故选:C
    【点睛】本题考查了平行线分线段成比例的应用,作出适当的辅助线是解题的关键.
    3.A
    【分析】以BD为对称轴作N的对称点N′,连接PN′,MN′,依据PM−PN=PM−PN′⩽MN′,可得当P,M,N′三点共线时,取“=”,再求得,即可得出,∠CMN′=90°,再根据△N′CM为等腰直角三角形,即可得到CM=MN′=2,即可求得.
    【详解】解:如图所示,以BD为对称轴作N的对称点N’,连接MN′并延长交BD于P,连NP,
    根据轴对称性质可知,PN=PN',
    ∴PM﹣PN=PM﹣PN'≤MN',
    当P,M,N'三点共线时,取“=”,
    ∵正方形边长为8,
    ∴,
    ∵O为AC中点,
    ∴,
    ∵N为OA中点,
    ∴,
    ∴,
    ∴,
    ∵BM=6,
    ∴CM=AB-BM=8-6=2,
    ∴,
    ∴,∠CMN’=90°,
    ∵∠N'CM=45°,
    ∴△N'CM为等腰直角三角形,
    ∴CM=MN'=2,
    即PM-PN的最大值为2,
    故选:A.
    【点睛】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.
    4.B
    【详解】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.
    【详解】∵EF∥BC,
    ∴△AEF∽△ABC,
    ∵AB=3AE,
    ∴AE:AB=1:3,
    ∴S△AEF:S△ABC=1:9,
    设S△AEF=x,
    ∵S四边形BCFE=16,
    ∴,
    解得:x=2,
    ∴S△ABC=18,
    故选B.
    【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.
    5.C
    【分析】依据∠ADC=∠CFB=90°,∠CAD=∠BCF,即可得到△ADC∽△CFB;过D作DM∥BE交AC于N,交AB于M,得出DM垂直平分AF,即可得到DF=DA;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,可得b=a,依据即可得出,根据E是CD边的中点,可得CE:AB=1:2,再根据△CEF∽△ABF,即可得到=()2=.
    【详解】解:∵四边形ABCD是矩形,
    ∴AD∥BC,∠ADC=∠BCD=90°,
    ∴∠CAD=∠BCF,
    ∵BE⊥AC,
    ∴∠CFB=90°,
    ∴∠ADC=∠CFB,
    ∴△ADC∽△CFB,故A选项正确;
    如图,过D作DM∥BE交AC于N,交AB于M,
    ∵DE∥BM,BE∥DM,
    ∴四边形BMDE是平行四边形,
    ∴BM=DE=DC,
    ∴BM=AM,
    ∴AN=NF,
    ∵BE⊥AC于点F,DM∥BE,
    ∴DN⊥AF,
    ∴DM垂直平分AF,
    ∴DF=DA,故B选项正确;
    设CE=a,AD=b,则CD=2a,
    由△ADC∽△ECB,可得=,
    即b=a,

    ∴,故C选项错误;
    ∵E是CD边的中点,
    ∴CE:AB=1:2,
    又∵CE∥AB,
    ∴△CEF∽△ABF,
    ∴=()2=.
    故选D选项正确;
    故选C.
    【点睛】本题考查了相似三角形的判定和性质,矩形的性质的综合应用,正确的作出辅助线构造平行四边形是解题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
    6.A
    【分析】令BF=2x,CG=3x,FG=y,易证,得出,进而得出y=3x,则AE=4x,AD=8x,过点E作EH⊥BC于点H,根据勾股定理得出EH=x,最后求出的值.
    【详解】解:过点E作EH⊥BC于点H,
    又四边形ABCD为矩形,
    ∴∠A=∠B=∠D=∠BCD=90°,AD=BC,
    ∴四边形ABHE和四边形CDEH为矩形,
    ∴AB=EH,ED=CH,
    ∵,
    ∴令BF=2x,CG=3x,FG=y,则CF=3x+y,,,
    由题意,得,
    又为公共角,
    ∴,
    ∴,
    则,
    整理,得,
    解得x=-y(舍去),y=3x,
    ∴AD=BC=5x+y=8x,EG=3x,HG=x,
    在Rt△EGH中EH2+HG2=EG2,
    则EH2+x2=(3x)2,
    解得EH=x, EH=-x(舍),
    ∴AB=x,
    ∴.
    故选:A.
    【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,勾股定理求边长等知识,借助于相似三角形找到y=3x的关系式是解决问题的关键.
    7.A
    【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.
    【详解】解:当△DFE∽△ECB时,如图,
    ∴,
    设DF=x,CE=y,
    ∴,解得:,
    ∴,故B选项不符合题意;
    ∴,故选项D不符合题意;
    如图,当△DCF∽△FEB时,
    ∴,
    设FC=m,FD=n,
    ∴,解得:,
    ∴FD=10,故选项C不符合题意;
    ,故选项A符合题意;
    故选:A
    【点睛】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
    8.D
    【分析】过点E作EF⊥BC,交CB延长线于点F,过点A作AG⊥BE于点G,根据等腰直角三角形的性质可得,∠BED=45°,进而得到,,,再证得△BEF∽△ABG,可得,然后根据勾股定理,即可求解.
    【详解】解:如图,过点E作EF⊥BC,交CB延长线于点F,过点A作AG⊥BE于点G,
    在中,∠BDE=90°,,
    ∴,∠BED=45°,
    ∵点A在边的中点上,
    ∴AD=AE=1,
    ∴,
    ∴,
    ∵∠BED=45°,
    ∴△AEG是等腰直角三角形,
    ∴,
    ∴,
    ∵∠ABC=∠F=90°,
    ∴EF∥AB,
    ∴∠BEF=∠ABG,
    ∴△BEF∽△ABG,
    ∴,即,
    解得:,
    ∴,
    ∴.
    故选:D
    【点睛】本题主要考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理是解题的关键.
    9.B
    【分析】先根据矩形的判定与性质可得,从而可得,再根据相似三角形的判定证出,然后根据相似三角形的性质即可得出结论.
    【详解】解:由题意可知,四边形是矩形,



    又,





    整理得:,
    故选:B.
    【点睛】本题考查了矩形的判定与性质、相似三角形的判定与性质、一次函数的几何应用,熟练掌握相似三角形的判定与性质是解题关键.
    10.C
    【分析】根据线段垂直平分线的判定与性质即可判断选项A;先根据等腰三角形的性质可得,从而可得,再根据等腰三角形的性质可得,然后根据三角形的外角性质可得,由此即可判断选项B;先假设可得,再根据角的和差可得,从而可得,由此即可判断选项C;先根据等腰三角形的判定可得,再根据相似三角形的判定可得,然后根据相似三角形的性质可得,最后根据等量代换即可判断选项D.
    【详解】解:由题意可知,垂直平分,,
    ,则选项A正确;


    ,,
    ,,
    ,,

    ,则选项B正确;
    假设,

    又,

    ,与矛盾,
    则假设不成立,选项C错误;
    ,,

    在和中,,

    ,即,
    ,则选项D正确;
    故选:C.
    【点睛】本题考查了线段垂直平分线的性质、等腰三角形的判定与性质、全等三角形的性质、相似三角形的判定与性质,综合性较强,熟练掌握判定定理与性质是解题关键.
    11.B
    【分析】设,则,根据相似多边形的性质与相似三角形的性质与判定,分别求得矩形AEPH的面积为:,矩形HDFP的面积为:,矩形PEBG的面积为:,以及的面积,,进而比较可
    【详解】解:∵矩形ABCD被分割成4个小矩形,
    设,则,
    矩形AEPH~矩形HDFP
    矩形AEPH~矩形PEBG,
    矩形AEPH的面积为:
    矩形HDFP的面积为:
    矩形PEBG的面积为:
    -
    故选B
    【点睛】本题考查了相似多边形的性质,相似三角形的性质与判定,进行的性质,题中相等量两较多,关系复杂,设参数是解题的关键.
    12.C
    【分析】根据位似图形的相似比成比例解答.
    【详解】解:∵右边的“E”与左边的“E”是位似图形,A是位似中心,位似比为3:5,BC=75,
    ∴GH:BC=3:5,即GH:75=3:5.
    ∴GH=45.
    故选:C.
    【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.
    13.A
    【分析】根据位似图形的概念得到△AOB△DOE,根据相似三角形的性质求出AB:DE,根据相似三角形的周长比等于相似比解答即可.
    【详解】解:∵△ABC与△DEF是位似图形,
    ∴,
    ∴△AOB△DOE,

    ∴△ABC与△DEF的周长之比是2:1.
    故选A.
    【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质.
    14.D
    【分析】由题意得点F的坐标同时乘以或,即可得点F的对应点的坐标为,.
    【详解】解:∵点,以原点O为位似中心,位似比为,
    ∴点F的对应点的坐标为,或,
    即点F的对应点的坐标为,,
    故选D.
    【点睛】本题考查了位似,解题的关键是要分情况讨论.
    15.
    【分析】设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.
    【详解】解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),
    解得:x=或(舍去).
    故答案为.
    【点睛】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.
    16.
    【分析】过点D作DH⊥BC于点H,交BE于点F,设BE与CD交于点M,由题意易得∠MEC=∠EMC,DH∥AC,则有,然后设,则有,进而可得,最后根据勾股定理可求解.
    【详解】解:过点D作DH⊥BC于点H,交BE于点F,设BE与CD交于点M,如图所示:
    ∵,
    ∴DH∥AC,
    ∵点为中点,
    ∴,,
    ∴点F是BE的中点,
    ∵,
    ∴,
    由折叠的性质可得:,
    ∵,
    ∴,
    ∴,
    ∵DH∥AC,
    ∴,
    ∴,
    设,则有,,,
    在Rt△ACB中,由勾股定理得:,
    解得:(负根舍去),
    即;
    故答案为.
    【点睛】本题主要考查平行线所截线段成比例、勾股定理、一元二次方程的解法、等腰三角形的性质与判定、折叠的性质及直角三角形斜边中线定理,熟练掌握平行线所截线段成比例、勾股定理、一元二次方程的解法、等腰三角形的性质与判定、折叠的性质及直角三角形斜边中线定理是解题的关键.
    17. 2
    【分析】(1)根据折叠和矩形的性质,证出AF = AB =CD,由点 B 恰好落在 CD 边上的中点 F 处,得出 DF =AF ,得 ∠DAF =30°,再求出∠CFE = ∠DAF =30°,即可得答案;
    (2)先证△AFD∽△FEC,得,由AB=AF=CD,BE=EF,得,,由,,得=x-1,可得答案.
    【详解】解:(1)由折叠,得 AF = AB , BE = EF ,
    ∵四边形 ABCD 是矩形,
    ∴ AB = CD , ∠D =90°,∠C =90°,
    ∵点 B 恰好落在 CD 边上的中点 F 处,
    ∴ DF =CD =AB = AF ,
    在 Rt △ ADF 中,由 DF =AF ,得 ∠DAF =30°,
    ∵∠DAF + ∠AFD =90°,∠AFD + ∠CFE =90°,
    ∴∠CFE = ∠DAF =30°,
    所以在 Rt △ ECF 中,,
    ∴,
    ∴x=2;
    (2)∵△AFE是由△ABE折叠而来的,
    ∴△AFE≌△ABE,
    ∴BE=EF,AB=AF=CD,
    ∵∠EFC+∠AFD=90°,
    ∠EFC+∠FEC=90°,
    ∴∠AFD=∠FEC,
    ∵∠ADC=∠BCD,
    ∴△AFD∽△FEC,
    ∴ ,
    ∴,
    ∵AB=AF=CD,BE=EF,
    ∴,
    ∴,
    ∵,,
    ∴1+=x,
    ∴=x-1,
    ∴y=(x>1).
    【点睛】本题考查了折叠和矩形的性质,在直角三角形中,30°的角对的边是斜边的一半,相似三角形的判定与性质,解题的关键是证三角形相似.
    18. 36
    【分析】由等腰三角形的性质得出∠DAE=∠DEA,证出∠BEC=∠BCE,由折叠的性质得出∠ECO=∠BCO,设∠ECO=∠OCB=∠B=x,证出∠BCE=∠ECO+∠BCO=2x,∠CEB=2x,由三角形内角和定理可得出答案;证明△CEO∽△BEC,由相似三角形的性质得出,设EO=x,EC=OC=OB=a,得出a2=x(x+a),求出OE=a,证明△BCE∽△DAE,由相似三角形的性质得出,则可得出答案.
    【详解】解:∵AD=DE,
    ∴∠DAE=∠DEA,
    ∵∠DEA=∠BEC,∠DAE=∠BCE,
    ∴∠BEC=∠BCE,
    ∵将该圆形纸片沿直线CO对折,
    ∴∠ECO=∠BCO,
    又∵OB=OC,
    ∴∠OCB=∠B,
    设∠ECO=∠OCB=∠B=x,
    ∴∠BCE=∠ECO+∠BCO=2x,
    ∴∠CEB=2x,
    ∵∠BEC+∠BCE+∠B=180°,
    ∴x+2x+2x=180°,
    ∴x=36°,
    ∴∠B=36°;
    ∵∠ECO=∠B,∠CEO=∠CEB,
    ∴△CEO∽△BEC,
    ∴,
    ∴CE2=EO•BE,
    设EO=x,EC=OC=OB=a,
    ∴a2=x(x+a),
    解得,x=a(负值舍去),
    ∴OE=a,
    ∴AE=OA-OE=a-a=a,
    ∵∠AED=∠BEC,∠DAE=∠BCE,
    ∴△BCE∽△DAE,
    ∴,
    ∴.
    故答案为:36,.
    【点睛】本题是圆的综合题,考查了圆周角定理,折叠的性质,等腰三角形的判定与性质,三角形内角和定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.
    19. (,0)
    【分析】连接OD,作DG⊥x轴,设点B(b,),D(a,),根据矩形的面积得出三角形BOD的面积,将三角形BOD的面积转化为梯形BEGD的面积,从而得出a,b的等式,将其分解因式,从而得出a,b的关系,进而在直角三角形BOD中,根据勾股定理列出方程,进而求得B,D的坐标,进一步可求得结果.
    【详解】解:如图,
    作DG⊥x轴于G,连接OD,设BC和OD交于I,
    设点B(b,),D(a,),
    由对称性可得:△BOD≌△BOA≌△OBC,
    ∴∠OBC=∠BOD,BC=OD,
    ∴OI=BI,
    ∴DI=CI,
    ∴,
    ∵∠CID=∠BIO,
    ∴△CDI∽△BOI,
    ∴∠CDI=∠BOI,
    ∴CD∥OB,
    ∴S△BOD=S△AOB=S矩形AOCB=,
    ∵S△BOE=S△DOG=|k|=3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,
    ∴S梯形BEGD=S△BOD=,
    ∴ (+)•(a-b)=,
    ∴2a2-3ab-2b2=0,
    ∴(a-2b)•(2a+b)=0,
    ∴a=2b,a=-(舍去),
    ∴D(2b,),即:(2b,),
    在Rt△BOD中,由勾股定理得,
    OD2+BD2=OB2,
    ∴[(2b)2+()2]+[(2b-b)2+(-)2]=b2+()2,
    ∴b=,
    ∴B(,2),D(2,),
    ∵直线OB的解析式为:y=2x,
    ∴直线DF的解析式为:y=2x-3,
    当y=0时,2x-3=0,
    ∴x=,
    ∴F(,0),
    ∵OE=,OF=,
    ∴EF=OF-OE=,
    ∴,
    故答案为:,(,0).
    【点睛】本题考查了矩形性质,轴对称性质,反比例函数的“k”的几何含义,勾股定理,一次函数及其图象性质,分解因式等知识,解决问题的关键是变形等式,进行分解因式.
    20.9.88
    【分析】根据平行投影得AC∥DE,可得∠ACB=∠DFE,证明Rt△ABC∽△Rt△DEF,然后利用相似三角形的性质即可求解.
    【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.
    ∴AC∥DF,
    ∴∠ACB=∠DFE,
    ∵AB⊥BC,DE⊥EF,
    ∴∠ABC=∠DEF=90°,
    ∴Rt△ABC∽Rt△DEF,
    ∴,即,
    解得AB=9.88,
    ∴旗杆的高度为9.88m.
    故答案为:9.88.
    【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt△ABC∽△Rt△DEF是解题的关键.
    21.6
    【分析】根据相似三角形的性质可得,再根据DE=2,进而得到BC长.
    【详解】解:根据题意,
    ∵,
    ∴△ADE∽△ABC,
    ∴,
    ∵DE=2,
    ∴,
    ∴;
    故答案为:6.
    【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的性质进行计算.
    22.
    【分析】过点作轴于点,过点作轴于点,设点的坐标为,则,先根据相似三角形的判定可得,根据相似三角形的性质可得,又根据相似三角形的判定证出,根据相似三角形的性质可得,,再根据反比例函数的解析式可得,从而可得,然后根据即可得出答案.
    【详解】解:如图,过点作轴于点,过点作轴于点,
    设点的坐标为,则,
    ,,
    ,,
    轴,轴,


    ,即,

    又轴,轴,


    ,即,
    解得,,
    将代入反比例函数得:,


    由得:,



    解得,
    即,
    故答案为:.
    【点睛】本题考查了反比例函数的几何应用、相似三角形的判定与性质,通过作辅助线,构造相似三角形是解题关键.
    23.(﹣,).
    【详解】试题分析:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,
    ∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,
    ∵OA=2,OC=1.
    ∵点B的坐标为(﹣2,1),
    ∴点B1的坐标为(﹣2×,1×),
    ∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,
    ∴B2(﹣2××,1××),
    ∴Bn(﹣2×,1×),
    ∵矩形AnOCnBn的对角线交点(﹣2××,1××),即(﹣,),
    考点:位似变换;坐标与图形性质;规律探究题.
    24.,
    【分析】根据位似变换的性质解答即可.
    【详解】解:以点为位似中心,在第三象限内作与的位似比为的位似图形,,
    点的横坐标为,纵坐标为,
    点的坐标为,,
    故答案为:,.
    【点睛】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.
    25.(1)画图见解析
    (2)画图见解析
    (3)画图见解析
    【分析】(1)分别确定A,B平移后的对应点C,D,从而可得答案;
    (2)确定线段AB,AC关于直线BC对称的线段即可;
    (3)分别计算的三边长度,再利用相似三角形的对应边成比例确定的三边长度,再画出即可.
    【详解】(1)解:如图,线段CD即为所求作的线段,
    (2)如图,四边形ABDC是所求作的轴对称图形,
    (3)如图,如图,即为所求作的三角形,
    由勾股定理可得: 而
    同理: 而

    【点睛】本题考查的是平移的作图,轴对称的作图,相似三角形的作图,掌握平移轴对称的性质,相似三角形的判定方法是解本题的关键.
    26.教材呈现:详见解析;结论应用:(1);(2)6.
    【分析】教材呈现:如图①,连结.根据三角形中位线定理可得,,那么,由相似三角形对应边成比例以及比例的性质即可证明;
    结论应用:(1)如图②.先证明,得出,那么,又,可得,由正方形的性质求出,即可求出;
    (2)如图③,连接.由(1)易证.根据同高的两个三角形面积之比等于底边之比得出与的面积比,同理,与的面积比=2,那么的面积的面积=2(的面积的面积)=,所以的面积,进而求出的面积.
    【详解】教材呈现:
    证明:
    如图①,连结.
    ∵在中,分别是边的中点,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴;
    结论应用:
    (1)解:如图②.
    ∵四边形为正方形,为边的中点,对角线、交于点,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵正方形中,,
    ∴,
    ∴.
    故答案为;
    (2)解:如图③,连接.
    由(1)知,,
    ∴.
    ∵与的高相同,
    ∴与的面积比,
    同理,与的面积比=2,
    ∴的面积的面积=2(的面积的面积),
    ∴的面积,
    ∴的面积.
    故答案为6.
    【点睛】考核知识点:相似三角形的判定和性质.灵活运用正方形性质,相似三角形判定和性质是关键.
    27.(1)2
    (2)6
    【分析】(1)利用平行四边形对边平行证明,得到即可求出;
    (2)利用平行条件证明,分别求出、的相似比,通过相似三角形的面积比等于相似比的平方分别求出、,最后通过求出.
    【详解】(1)∵四边形BFED是平行四边形,
    ∴ ,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴;
    (2)∵四边形BFED是平行四边形,
    ∴,,DE=BF,
    ∴,

    ∴,
    ∵,DE=BF,
    ∴,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴.
    【点睛】本题考查了相似三角形,熟练掌握相似三角形的面积比等于相似比的平方、灵活运用平行条件证明三角形相似并求出相似比是解题关键.
    28.(1)①A(3,0),B(3,3),C(0,3);②
    (2)(0≤m≤3);
    【分析】(1)①根据坐标与图形的性质即可求解;②利用待定系数法求解即可;
    (2)证明Rt△ABP∽Rt△PCM,根据相似三角形的性质得到n关于m的二次函数,利用二次函数的性质即可求解.
    【详解】(1)解:①∵正方形OABC的边长为3,
    ∴点A,B,C的坐标分别为A(3,0),B(3,3),C(0,3);
    ②把点A(3,0),C(0,3)的坐标分别代入y=−x2+bx+c,
    得,解得;
    (2)解:由题意,得∠APB=90°-∠MPC=∠PMC,∠B=∠PCM=90°,
    ∴Rt△ABP∽Rt△PCM,
    ∴,即.
    整理,得,即(0≤m≤3).
    ∴当时,n的值最大,最大值是.
    【点睛】本题综合考查了正方形的性质,相似三角形的判定和性质,二次函数的性质,待定系数法求函数解析式,根据正方形的性质求出点A,B,C的坐标是解题的关键.
    29.(1)见解析
    (2)
    (3)螺旋折线…中相邻线段的比均为或,见解析
    【分析】(1)证明,则,同理可证,再证明有一个角为直角,即可证明四边形为正方形;
    (2)勾股定理求解的长度,再作比即可;
    (3)两个结论:螺旋折线…中相邻线段的比均为或;螺旋折线…中相邻线段的夹角的度数不变,选一个证明即可,证明过程见详解.
    【详解】(1)在正方形中,,,
    又∵,
    ∴.
    ∴.
    ∴,.
    又∵,
    ∴.
    ∴.
    同理可证:.
    ∴四边形是正方形.
    (2)∵,设,则.
    ∴.
    ∴由勾股定理得:.
    ∴.
    (3)结论1:螺旋折线…中相邻线段的比均为或.
    证明:∵,
    ∴.
    同理,.…
    ∴.
    同理可得,…
    ∴螺旋折线…中相邻线段的比均为或.
    结论2:螺旋折线…中相邻线段的夹角的度数不变.
    证明:∵,,
    ∴,
    ∴.
    同理得:,
    ∵,
    ∴,即.
    同理可证.
    ∴螺旋折线…中相邻线段的夹角的度数不变.
    【点睛】本题考查了正方形的性质与判定、勾股定理、相似三角形的性质与判定、全等三角形的判定与性质,熟练掌握全等三角形的性质与判定、相似三角形的性质与判定是解题的关键.
    30.(1)见解析
    (2)或5
    (3)或或或
    【分析】(1)证明△AFG是等腰三角形即可得到答案;
    (2)记中点为点O.分点E在上和点E在上两种情况进行求解即可;
    (3)过点A作于点M,作于点N.分点E在线段上时,点E在线段上时,点E在线段上,点E在线段上,共四钟情况分别求解即可.
    【详解】(1)证明:如图1,
    ∵四边形是菱形,
    ∴,
    ∴.
    ∵FGBC,
    ∴,
    ∴,
    ∴△AFG是等腰三角形,
    ∴.
    (2)解:记中点为点O.
    ①当点E在上时,如图2,过点A作于点M,
    ∵在中,,
    ∴.
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    ②当点E在上时,如图3,
    过点A作于点N.
    同理,,

    ∴.
    ∴或5.
    (3)解:过点A作于点M,作于点N.
    ①当点E在线段上时,.设,则,
    ⅰ)若点H在点C的左侧,,即,如图4,

    ∵,
    ∴,
    ∴,
    ∴,
    解得,
    经检验,是方程的根,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,
    解得,
    经检验,是方程的根,
    ∴.
    ⅱ)若点H在点C的右侧,,即,如图5,

    ∵,
    ∴,
    ∴,
    ∴,
    此方程无解.
    ∵,
    ∴,
    ∴,
    ∴,
    解得,
    经检验,是方程的根,
    ∴.
    ②当点E在线段上时,,如图6,.
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,
    此方程无解.
    ∵,
    ∴,
    ∴,
    ∴,
    解得,
    经检验,是方程的根,
    ∵,
    ∴不合题意,舍去;
    ③当点E在线段上时,,如图7,过点C作于点J,
    在中,.

    ∴,
    ∴,
    ∵,
    ∴,符合题意,
    此时,.
    ④当点E在线段上时,,
    ∵,
    ∴与不相似.
    综上所述,s满足的条件为:或或或.
    【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键.
    31.(1),见解析
    (2)见解析
    (3)
    【分析】(1)证明(),得到,进一步得到,由△CFH是等腰三角形,结论得证;
    (2)过点K作于点G.先证△AKG∽△ACB,得,证△KHG∽CHB可得,结论得证;
    (3)过点K作点G.求得,设,,则KG=AG=GB=3a,则,勾股定理得,,由得,得,,即可得到答案.
    【详解】(1)证明:∵四边形是正方形,
    ∴,,
    又∵,
    ∴(),
    ∴.
    又∵,
    ∴.

    ∴△CFH是等腰三角形,
    ∴.
    (2)证明:如图1,过点K作于点G.
    ∵,
    ∴.
    ∴,
    ∴.
    ∵,,
    ∴.
    ∴,
    ∴,
    ∴.
    (3)解:如图2,过点K作点G.
    ∵点K为中点:
    由(2)得,
    ∴,
    设,,则,
    ∴,,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,
    又∵,
    ∴,
    ∴.
    ∴,
    ∴,
    ∴.
    【点睛】此题考查正方形的性质、相似三角形的判定和性质、勾股定理、直角三角形全等的判定定理等知识,熟练掌握相似三角形的判定和性质是解题的关键.
    32.(1)见详解
    (2)见详解
    【分析】(1)画一个高为3,底边长为4的三角形即可;
    (2)连接格点EF交AB于点P,即可得到.
    (1)
    解:如图①,△ABC即为所求(答案不唯一);
    (2)
    解:如图②,点P即为所求.

    【点睛】本题考查作图-应用与设计作图,相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题.

    相关试卷

    浙江省2023年中考数学一轮复习 整式的乘除 练习题(含详解) :

    这是一份浙江省2023年中考数学一轮复习 整式的乘除 练习题(含详解) ,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    浙江省2023年中考数学一轮复习 平行线 练习题(含详解) :

    这是一份浙江省2023年中考数学一轮复习 平行线 练习题(含详解) ,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    浙江省2023年中考数学一轮复习 图形的初步认识 练习题(含详解) :

    这是一份浙江省2023年中考数学一轮复习 图形的初步认识 练习题(含详解) ,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map