所属成套资源:2025年高考数学一轮复习夯实基础和高分冲刺(原卷版+解析版)
专题05 一元函数的导数及其应用(讲练)--2025年高考数学一轮复习基础夯实
展开
这是一份专题05 一元函数的导数及其应用(讲练)--2025年高考数学一轮复习基础夯实,文件包含专题05一元函数的导数及其应用4知识点+8重难点+6技巧+4易错原卷版docx、专题05一元函数的导数及其应用4知识点+8重难点+6技巧+4易错解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
2、精练习题。不搞“题海战术”,在老师指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。
4、重视错题。错误要及时寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题05 一元函数的导数及其应用
(思维构建+知识盘点+重点突破+方法技巧+易混易错)
知识点1 导数的概念
1、函数y=f(x)在x=x0处的导数定义
一般地,称函数y=f(x)在x=x0处的瞬时变化率eq \f(f(x0+Δx)-f(x0),Δx)=eq \(lim,\s\d5(Δx→0))eq^\(lim,\s\d4(Δx→0))eq \f(Δy,Δx)为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=eq \(lim,\s\d5(Δx→0))eq^\(lim,\s\d4(Δx→0))eq \f(Δy,Δx)=eq^\(lim,\s\d4(Δx→0))eq \(lim,\s\d5(Δx→0))eq \f(f(x0+Δx)-f(x0),Δx).
2、导数的几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).
3、函数f(x)的导函数:称函数f′(x)=eq^\(lim,\s\d4(Δx→0))eq \(lim,\s\d5(Δx→0))eq \f(f(x+Δx)-f(x),Δx)为f(x)的导函数.
知识点2 导数的运算
1、基本初等函数的导数公式
2、导数的运算法则
(1)[f(x)±g(x)]′=f′(x)±g′(x).
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).
(3)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(f(x),g(x))))′=eq \f(f′(x)g(x)-f(x)g′(x),[g(x)]2)(g(x)≠0).
3、复合函数的导数
(1)复合函数的概念:一般地,对于两个函数和,如果通过中间变量,可以表示成的函数,那么称这个函数为和的复合函数,记作.
(2)复合函数的求导法则:一般地,复合函数的导数和函数,的导数间的关系为,即y对x的导数等于y对u的导数与u对x的导数的乘积.
规律:从内到外层层求导,乘法连接。
(3)求复合函数导数的步骤
第一步分层:选择中间变量,写出构成它的内、外层函数;
第二步分别求导:分别求各层函数对相应变量的导数;
第三步相乘:把上述求导的结果相乘;
第四步变量回代:把中间变量代回。
知识点3 导数与函数的单调性
1、导数与函数的单调性的关系
在某个区间内,如果,那么函数在这个区间内单调递增;
如果,那么函数在这个区间内单调递减.
【注意】
(1)在某区间内()是函数在此区间上为增(减)函数的充分不必要条件;
(2)可导函数在上是增(减)函数的充要条件是对∀x∈(a,b),都有()且在上的任何子区间内都不恒为零.
2、导数法求函数单调区间的步骤
(1)确定函数的定义域;
(2)求(通分合并、因式分解);
(3)解不等式,解集在定义域内的部分为单调递增区间;
(4)解不等式,解集在定义域内的部分为单调递减区间.
知识点4 导数与函数的极值、最值
1、函数的极值
(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
2、函数的最值
(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.
3、函数极值与最值的关系
(1)函数的最大值和最小值是比较整个定义域区间上的函数值得到的,是一个整体的概念,与函数的极大(小)值不同,函数的最大(小)值若有,则只有一个。
(2)开区间内的可导函数,若有唯一的极值,则这个极值是函数的最值。
重难点01 根据切线情况求参数
已知,过点,可作曲线的()条切线问题
第一步:设切点
第二步:计算切线斜率;
第三步:计算切线方程.根据直线的点斜式方程得到切线方程:.
第四步:将代入切线方程,得:,整理成关于得分方程;
第五步:题意已知能作几条切线,关于的方程就有几个实数解;
【典例1】(23-24高三上·广东·月考)若曲线在点处的切线方程为,则 .
【典例2】(22-23高三下·湖南长沙·月考)设直线是曲线的一条切线,则 .
【典例3】(23-24高三上·广西南宁·月考)已知曲线与的公切线为,则实数 .
重难点02 含参函数单调性讨论依据
(1)导函数有无零点讨论(或零点有无意义);
(2)导函数的零点在不在定义域或区间内;
(3)导函数多个零点时大小的讨论。
【典例1】(23-24高三下·江西·月考)已知函数.
(1)若,求曲线在处的切线方程;
(2)若,讨论的单调性.
【典例2】(2024·海南·模拟预测)已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若函数(为的导函数),讨论的单调性.
重难点03 构造函数法解决函数问题中的常见类型
关系式为“加”型构造:
构造
(2) 构造
(3) 构造
(4)构造(注意的符号)
(5) 构造
关系式为“减”型构造:
(6) 构造
(7) 构造
(8) 构造
(9)构造(注意的符号)
(10) 构造
【典例1】(2024·山东聊城·三模)设函数的定义域为,导数为,若当时,,且对于任意的实数,则不等式的解集为( )
A.B.C.D.
【典例2】(23-24高三上·河北·月考)已知函数及其导函数的定义域均为,且恒成立,,则不等式的解集为( )
A.B.C.D.
【典例3】(23-24高三上·山东菏泽·月考)若定义在上的函数满足,且,则不等式的解集为
重难点04 单变量不等式恒成立问题
一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:
1、,
2、,
3、,
4、,
【典例1】(2024·河南·三模)若关于的不等式恒成立,则实数的最大值为( )
A.B.C.1D.
【典例2】(2024·陕西·二模),有恒成立,则实数的取值范围为( )
A.B.C.D.
重难点 05 双变量不等式与等式
一般地,已知函数,
(1)若,,总有成立,故;
(2)若,,有成立,故;
(3)若,,有成立,故;
(4)若,,有成立,故.
【典例1】(23-24高三上·江苏常州·期中)已知函数.
(1)讨论的单调性;
(2)对于,使得,求实数的取值范围.
【典例2】(2023高三·全国·专题练习)设函数,.
(1)若曲线在处的切线过点,求的值;
(2)设若对,,使得成立,求的取值范围.
重难点 06 导数与函数零点问题
利用导数确定函数零点的常用方法
1、图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需要使用极限);
2、利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数。
【典例1】(2024高三下·浙江杭州·模拟预测)若函数有且仅有两个零点,则的取值范围是( )
A.B.
C.D.
【典例2】(23-24高三下·河北·月考)已知函数在区间内有唯一极值点,其中为自然对数的底数.
(1)求实数的取值范围;
(2)证明:在区间内有唯一零点.
重难点07 隐零点问题的应用
导函数的零点不可求时的应对策略:
1、“特值试探”法:当导函数的零点不可求时,可尝试利用特殊值试探,此时特殊值的选取应遵循以下原则:①在含有的函数中,通常选取,特别地,选当时,来试探;②在含有的函数中,通常选取,特别地,选取当时,来试探,在探得导函数的一个零点后,结合导函数的单调性,确定导函数在零点左右的符号,进而确定原函数的单调性和极值,使问题得到解决.
2、“虚设和代换”法:当导函数的零点无法求出显性的表达式时,我们可以先证明零点存在,再虚设为,接下来通常有两个方向:①由得到一个关于的方程,再将这个关于的方程的整体或局部代入,从而求得,然后解决相关的问题;②根据导函数的单调性,得出两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解。
【典例1】(23-24高三上·湖南·月考)已知函数,.
(1)求函数的单调区间;
(2)记函数的导函数为,若不等式恒成立,求实数的取值范围.
【典例2】(23-24高三下·四川巴中·月考)函数;
(1)当时,讨论函数的单调性;
(2)在恒成立,求整数的最大值.
重难点 08 极值点偏移问题
证明极值点偏移问题常用思路:利用分析法,将所证不等式中的变量分到不等式的两边,构造对称函数,注意将和化到同一区间,再利用导数据研究函数的单调性,求极致、最值等手段证得不等式。
【典例1】(2024高三·全国·专题练习)已知函数为实数.
(1)讨论函数的极值;
(2)若存在满足,求证:.
【典例2】(2024·云南·二模)已知常数,函数.
(1)若,求的取值范围;
(2)若、是的零点,且,证明:.
一、导数定义中极限的计算
瞬时变化率的变形形式
lim∆x→0fx0+∆x−f(x0)∆x=lim∆x→0fx0−∆x−fx0−∆x=lim∆x→0fx0+n∆x−f(x0)n∆x=lim∆x→0fx0+∆x−f(x0−∆x)2∆x=f'(x0)
【典例1】(2023·吉林长春·模拟预测)利用导数的定义计算值为( )
A.1B.C.0D.2
【典例2】(2024·江苏南通·二模)已知,当时, .
二、求曲线“在”与“过”某点的切线
1、求曲线“在”某点处的切线方程步骤
第一步(求斜率):求出曲线在点处切线的斜率
第二步(写方程):用点斜式
第三步(变形式):将点斜式变成一般式。
2、求曲线“过”某点处的切线方程步骤
第一步:设切点为;
第二步:求出函数在点处的导数;
第三步:利用Q在曲线上和,解出及;
第四步:根据直线的点斜式方程,得切线方程为.
【典例1】(23-24高三上·河南·月考)曲线在点处的切线方程为 .
【典例2】(23-24高三上·山东青岛·期中)曲线过原点的切线方程为 .
三、已知函数的单调性求参数
(1)函数在区间D上单调增(单减)在区间D上恒成立;
(2)函数在区间D上存在单调增(单减)区间在区间D上能成立;
(3)已知函数在区间D内单调不存在变号零点
(4)已知函数在区间D内不单调存在变号零点
【典例1】(2023·贵州遵义·模拟预测)若函数在区间上单调递增,则的可能取值为( )
A.2B.3C.4D.5
【典例2】(2023·宁夏银川·三模)若函数在区间上不单调,则实数m的取值范围为( )
A.B.C.D.m>1
四、利用导数求函数的极值或极值点
1、利用导数求函数极值的方法步骤
(1)求导数;
(2)求方程的所有实数根;
(3)观察在每个根x0附近,从左到右导函数的符号如何变化.
①如果的符号由正变负,则是极大值;
②如果由负变正,则是极小值.
③如果在的根x=x0的左右侧的符号不变,则不是极值点.
【典例1】(23-24高三下·山东菏泽·月考)函数的极小值点为( )
A.B.C.D.
【典例2】(23-24高三下·海南·月考)已知函数在处的切线平行于直线.
(1)求的值;
(2)求的极值.
五、根据函数的极值求参数
根据函数的极值点个数求解参数范围问题的一般思路:
根据函数的极值点个数求解参数范围问题的一般思路先求解出,然后分析的根的个数:①分类讨论法分析的根的个数并求解参数范围;②参变分离法分析的根的个数并求解参数范围;③转化为两个函数的交点个数问题并求解参数范围.
【典例1】(23-24高三上·山西临汾·月考)已知曲线在点处的切线斜率为3,且是的极值点,则函数的另一个极值点为 .
【典例2】(2024·辽宁葫芦岛·一模)已知函数在上无极值,则的取值范围是( )
A.B.C.D.
【典例3】(23-24高三上·河北衡水·月考)(多选)若函数既有极大值也有极小值,则( )
A.B.C.D.
六、利用导数研究函数的最值
函数在区间上连续,在内可导,则求函数最值的步骤为:
(1)求函数在区间上的极值;
(2)将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值;
(3)实际问题中,“驻点”如果只有一个,这便是“最值”点。
【典例1】(23-24高三下·河南·月考)函数的最小值为( )
A.B.C.D.
【典例2】(23-24高三下·湖南长沙·月考)已知函数.
(1)当时,求在处的切线方程;
(2)讨论在区间上的最小值.
易错点1 复合函数求导错误
点拨:复合函数对自变量的导数等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即。
【典例1】(2024高三·全国·专题练习)函数的导数是 .
【典例2】(2024高三·全国·专题练习)设函数,则
易错点2 误解“导数为0”与“有极值”的逻辑关系
点拨:在使用导数求函数极值时,很容易出现的错误是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这种错误的原因就是对导数与极值关系不清。可导函数在一点处的导函数值为0只是这个函数在此点取到极值的必要条件,充要条件是两侧异号。
【典例1】(23-24高三上·黑龙江·月考)如图是函数的导函数的图象,下列结论正确的是( )
A.在处取得极大值B.是函数的极值点
C.是函数的极小值点D.函数在区间上单调递减
【典例2】(2023高三·全国·专题练习)(多选)设函数在R上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是( )
A.有两个极值点B.为函数的极大值
C.有两个极小值D.为的极小值
易错点3 对“导数值符号”与“函数单调性”关系理解不透彻
点拨:一个函数在某个区间上单调增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为0。切记导函数在某区间上恒大(小)于0仅为该函数在此区间上单调增(减)的充分条件。
【典例1】(2024·山东滨州·二模)若函数在区间上单调递减,则的取值范围是 .
【典例2】(2024·江西上饶·一模)若函数在区间上单调递增,则的取值范围为 .
易错点4 对“导函数值正负”与“原函数图象升降”关系不清楚
点拨:解答此类题的关键是抓住①导函数的零点与原函数的极值点关系——极值点的导数值为0;②导函数值的符号与原函数单调性的关系——原函数看增减,导函数看正负。
【典例1】(23-24高三上·广东湛江·月考)的图象如图所示,则的图象最有可能是( )
A. B.
C. D.
【典例2】(23-24高三下·全国·专题练习)设是函数的导函数,的图象如图所示,则的图象可能是( )
A.B.
C.D.原函数
导函数
f(x)=c(c为常数)
f′(x)=0
f(x)=xn(n∈Q*)
f′(x)=nxn-1
f(x)=sin x
f′(x)=cs_x
f(x)=cs x
f′(x)=-sin_x
f(x)=ax(a>0且a≠1)
f′(x)=axln_a
f(x)=ex
f′(x)=ex
f(x)=lgax(x>0,a>0且a≠1)
f′(x)=eq \f(1,xln a)
f(x)=ln x (x>0)
f′(x)=eq \f(1,x)
相关试卷
这是一份专题04 指对幂函数及函数与方程(讲练)--2025年高考数学一轮复习基础夯实,文件包含专题04指对幂函数及函数与方程5知识点+4重难点+7技巧+4易错原卷版docx、专题04指对幂函数及函数与方程5知识点+4重难点+7技巧+4易错解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
这是一份专题03 函数的概念与性质(讲练)--2025年高考数学一轮复习基础夯实,文件包含专题03函数的概念与性质5知识点+4重难点+5方法技巧+5易错易混原卷版docx、专题03函数的概念与性质5知识点+4重难点+5方法技巧+5易错易混解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份专题01 集合与常用逻辑用语(讲练)--2025年高考数学一轮复习基础夯实,文件包含专题01集合与常用逻辑用语原卷版docx、专题01集合与常用逻辑用语解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。