山东省青岛市2024-2025学年高三上册1月期末数学检测试题
展开
这是一份山东省青岛市2024-2025学年高三上册1月期末数学检测试题,共6页。试卷主要包含了 展开式的常数项为, 已知,则下列选项正确的是等内容,欢迎下载使用。
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上的无效.
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1 集合,,则( )
A. B. C. D.
2. 已知平面向量,则向量在向量上的投影向量是( )
A. B.
C. D.
3. 若复数的共轭复数在复平面内对应的点位于第四象限,则实数a的取值范围是( )
A. B. C. D.
4. 已知函数的图像关于原点中心对称,则的最小值为( )
A. B. C. D.
5. 展开式的常数项为( )
A. B. C. D.
6. 椭圆任意两条相互垂直的切线的交点轨迹为圆:,这个圆称为椭圆的蒙日圆.在圆上总存在点,使得过点能作椭圆的两条相互垂直的切线,财的取值范围是( )
A. B. C. D.
7. 1551年奥地利数学家、天文学家雷蒂库斯在《三角学准则》中首次用直角三角形的边长之比定义正割和余割,在某直角三角形中,一个锐角的斜边与其邻边的比,叫做该锐角的正割,用(角)表示;锐角的斜边与其对边的比,叫做该锐角的余割,用(角)表示,则( )
A. B. C. 4D. 8
8. 双曲线的中心为原点,焦点在轴上,两条渐近线分别为,,经过右焦点垂直于的直线分别交,于,两点.已知、、成等差数列,且与反向.则双曲线的离心率为( )
A. B. C. D.
二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,有选错的得0分,部分选对的得部分分.
9. 已知,则下列选项正确的是( )
A B.
C. D.
10. 有一组样本数据,添加一个数形成一组新的数据,且,则新的样本数据( )
A. 众数是1的概率是
B. 极差不变概率是
C. 第25百分位数不变的概率是
D. 平均值变大的概率是
11. 已知函数及其导函数定义域均为,若是奇函数,,且对任意,,则( )
A. B.
C. D.
三、填空题:本大题共3小题,每小题5分,共15分.
12. 已知正四棱台的上、下底面边长分别为2和4,若侧棱与底面所成的角为,则该正四棱台的体积为__________.
13. 某次会议中,筹备组将包含甲、己在内的4名工作人员,分配到3个会议厅工作,每个会议厅至少1人,每人只负责一个会议厅,则甲、乙两人不能分配到同一个会议厅的安排方法共有__________种.(用数字作答)
14. 某同学在研究构造新数列时发现:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列;...第次得到数列;记,则__________;__________.
四、解答题:本大题共5小题,共77分,解答应写出文字说明,证明过程或演算步骤.
15. 记的内角的对边分别为,已知.
(1)求的值;
(2)若,且的周长为,求边上的高.
16. 如图,底面是边长为2的菱形,平面.
(1)求证:平面平面;
(2)求平面与平面夹角的余弦值.
17. 为检验预防某种疾病的两种疫苗的免疫效果,随机抽取接种疫苗的志愿者各100名,化验其血液中某项医学指标(该医学指标范围为,统计如下:
个别数据模糊不清,用含字母的代数式表示.
(1)为检验该项医学指标在内的是否需要接种加强针,先从医学指标在的志愿者中,按接种疫苗分层抽取8人,再次抽血化验进行判断.从这8人中随机抽取4人调研医学指标低的原因,记这4人中接种疫苗的人数为,求的分布列与数学期望;
(2)根据(1)化验研判结果,医学认为该项医学指标低于50,产生抗体较弱,需接种加强针,该项医学指标不低于50,产生抗体较强,不需接种加强针.请先完成下面的列联表,若根据小概率的独立性检验,认为接种疫苗与志愿者产生抗体的强弱有关联,求的最大值.
附:,其中.
18. 已知椭圆离心率,其上焦点与抛物线的焦点重合.
(1)求椭圆的方程;
(2)若过点的直线交椭圆T于点、,同时交抛物线于点、(如图1所示,点在椭圆与抛物线第一象限交点上方),判断与的大小关系,并证明;
(3)若过点的直线交椭圆于点、,过点与直线垂直的直线交抛物线于点、(如图2所示),判断四边形的面积是否存在最小值?若存在,求出最小值;若不存在,说明理由.
19. 已知函数.
(1)若为奇函数,求此时在点处的切线方程;
(2)设函数,且存在分别为的极大值点和极小值点.
(i)求函数的极值;
(ii)若,且,求实数的取值范围.
该项医学指标
接种疫苗人数
10
50
接种疫苗人数
30
40
疫苗
抗体
合计
抗体弱
抗体强
疫苗
疫苗
合计
0.25
0.025
0.005
1.323
5.024
7.879
相关试卷
这是一份山东省青岛市2024-2025学年高三上册1月期末数学检测试题(含解析),共29页。试卷主要包含了 展开式的常数项为, 已知,则下列选项正确的是等内容,欢迎下载使用。
这是一份山东省青岛市2024-2025学年高三上册1月期末数学检测试题(附解析),共23页。试卷主要包含了 展开式的常数项为, 已知,则下列选项正确的是等内容,欢迎下载使用。
这是一份2024-2025学年山东省青岛市高三上册1月期末数学检测试题,共6页。