年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年甘肃省武威市中考数学模拟试题(解析版)

    2024年甘肃省武威市中考数学模拟试题(解析版)第1页
    2024年甘肃省武威市中考数学模拟试题(解析版)第2页
    2024年甘肃省武威市中考数学模拟试题(解析版)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年甘肃省武威市中考数学模拟试题(解析版)

    展开

    这是一份2024年甘肃省武威市中考数学模拟试题(解析版),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.
    一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
    1. 9的算术平方根是( )
    A. B. C. 3D.
    【答案】C
    【解析】
    【分析】由,可得9的算术平方根.
    【详解】解:9的算术平方根是3,
    故选C
    【点睛】本题考查的是算术平方根的含义,熟练的求解一个数的算术平方根是解本题的关键.
    2. 若,则( )
    A. 6B. C. 1D.
    【答案】A
    【解析】
    【分析】根据等式的性质即可得出结果.
    【详解】解:等式两边乘以,得,
    故选:A.
    【点睛】本题考查了等式的性质,熟练掌握等式的性质是本题的关键.
    3. 计算:( )
    A. 2B. C. D.
    【答案】B
    【解析】
    【分析】先计算单项式乘以多项式,再合并同类项即可.
    【详解】解:,
    故选:B
    【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键.
    4. 若直线(是常数,)经过第一、第三象限,则的值可为( )
    A. B. C. D. 2
    【答案】D
    【解析】
    【分析】通过经过的象限判断比例系数k的取值范围,进而得出答案.
    【详解】∵直线(是常数,)经过第一、第三象限,
    ∴,
    ∴的值可为2,
    故选:D.
    【点睛】本题考查正比例函数的图象与性质,熟记比例系数与图象经过的象限之间的关系是解题的关键.
    5. 如图,是等边的边上的高,以点为圆心,长为半径作弧交的延长线于点,则( )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】由等边三角形的性质求解,再利用等腰三角形的性质可得,从而可得答案.
    【详解】解:∵是等边的边上的高,
    ∴,
    ∵,
    ∴,
    故选C
    【点睛】本题考查的是等边三角形的性质,等腰三角形的性质,熟记等边三角形与等腰三角形的性质是解本题的关键.
    6. 方程的解为( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】把分式方程转化为整式方程求解,然后解出的解要进行检验,看是否为增根.
    【详解】去分母得,
    解方程得,
    检验:是原方程的解,
    故选A.
    【点睛】本题考查了解分式方程的一般步骤,解题关键是熟记解分式方程的基本思想是“转化思想”,即把分式方程转化为整式方程求解,注意分式方程需要验根.
    7. 如图,将矩形对折,使边与,与分别重合,展开后得到四边形.若,,则四边形的面积为( )

    A. 2B. 4C. 5D. 6
    【答案】B
    【解析】
    【分析】由题意可得四边形是菱形,,,由菱形的面积等于对角线乘积的一半即可得到答案.
    【详解】解:∵将矩形对折,使边与,与分别重合,展开后得到四边形,
    ∴,与互相平分,
    ∴四边形是菱形,
    ∵,,
    ∴菱形的面积为.
    故选:B
    【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.
    8. 据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约位数学家的《数学家传略辞典》中部分岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是( )

    A. 该小组共统计了100名数学家的年龄
    B. 统计表中的值为5
    C. 长寿数学家年龄在岁的人数最多
    D. 《数学家传略辞典》中收录的数学家年龄在岁的人数估计有110人
    【答案】D
    【解析】
    【分析】利用年龄范围为的人数为10人,对应的百分比为,即可判断A选项;由A选项可知该小组共统计了100名数学家的年龄,根据即可判断B选项;由扇形统计图可知,长寿数学家年龄在岁的占的百分比最大,即可判断C选项;用乘以小组共统计了100名数学家的年龄中在岁的百分比,即可判断D选项.
    【详解】解:A.年龄范围为的人数为10人,对应的百分比为,则可得(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;
    B.由A选项可知该小组共统计了100名数学家的年龄,则,故选项正确,不符合题意;
    C.由扇形统计图可知,长寿数学家年龄在岁的占的百分比最大,即长寿数学家年龄在岁的人数最多,故选项正确,不符合题意;
    D.《数学家传略辞典》中收录的数学家年龄在岁的人数估计有人,故选项错误,符合题意.
    故选:D.
    【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.
    9. 如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜与地面的夹角( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】如图,过作平面镜,可得,,而,再建立方程,可得,从而可得答案.
    【详解】解:如图,过作平面镜,

    ∴,,
    而,
    ∴,
    ∴,
    ∴,
    故选B.
    【点睛】本题考查是垂直的定义,角的和差运算,角平分线的含义,属于跨学科题,熟记基础概念是解本题的关键.
    10. 如图1,正方形的边长为4,为边的中点.动点从点出发沿匀速运动,运动到点时停止.设点的运动路程为,线段的长为,与的函数图象如图2所示,则点的坐标为( )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】证明,,,则当P与A,B重合时,最长,此时,而运动路程为0或4,从而可得答案.
    【详解】解:∵正方形的边长为4,为边的中点,
    ∴,,,
    当P与A,B重合时,最长,
    此时,
    运动路程为0或4,
    结合函数图象可得,
    故选C
    【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.
    二、填空题:本大题共6小题,每小题3分,共18分.
    11. 因式分解:________.
    【答案】
    【解析】
    【分析】先提取公因式,再利用平方差公式分解因式即可.
    【详解】解:,
    故答案为:
    【点睛】本题考查的是综合提公因式与公式法分解因式,掌握因式分解的方法与步骤是解本题的关键.
    12. 关于的一元二次方程有两个不相等的实数根,则________(写出一个满足条件的值).
    【答案】(答案不唯一,合理即可)
    【解析】
    【分析】先根据关于的一元二次方程有两个不相等的实数根得到,解得,根据的取值范围,选取合适的值即可.
    【详解】解:∵关于的一元二次方程有两个不相等的实数根,
    ∴,
    解得,
    当时,满足题意,
    故答案为:(答案不唯一,合理即可)
    【点睛】此题考查了一元二次方程根的判别式,熟练掌握当时,一元二次方程有两个不相等的实数根是解题的关键.
    13. 近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“米”,那么海平面以下10907米记作“________米”.
    【答案】
    【解析】
    【分析】根据正负数表示相反的意义解答即可.
    【详解】解:把海平面以上9050米记作“米”,则海平面以下10907米记作米,
    故答案为:.
    【点睛】此题考查了正负数的理解:在一个事件中,规定一个量为正,则表示相反意义的量为负,正确理解正负数表示一对相反的意义的量是解题的关键.
    14. 如图,内接于,是的直径,点是上一点,,则________.

    【答案】35
    【解析】
    【分析】由同弧所对的圆周角相等,得再根据直径所对的圆周角为直角,得,然后由直角三角形的性质即可得出结果.
    【详解】解:是所对的圆周角,
    是的直径,

    在中,,
    故答案为: .
    【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.
    15. 如图,菱形中,,,,垂足分别为,,若,则________.

    【答案】
    【解析】
    【分析】根据菱形的性质,含直角三角形的性质,及三角函数即可得出结果.
    【详解】解:在菱形中,,




    在中,,
    同理,,


    在中,

    故答案为:.
    【点睛】本题考查了菱形的性质,含直角三角形的性质,及三角函数等知识,熟练掌握菱形的性质是解题的关键.
    16. 如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点处离开水面,逆时针旋转上升至轮子上方处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从处(舀水)转动到处(倒水)所经过的路程是________米.(结果保留)

    【答案】
    【解析】
    【分析】把半径和圆心角代入弧长公式即可;
    【详解】
    故填:.
    【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.
    三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.
    17. 计算:.
    【答案】
    【解析】
    【分析】利用二次根式的混合运算法则计算即可.
    【详解】解:

    【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.
    18. 解不等式组:
    【答案】
    【解析】
    【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.
    【详解】解:解不等式组:,
    解不等式①,得.
    解不等式②,得.
    因此,原不等式组的解集为.
    【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.
    19. 化简:.
    【答案】
    【解析】
    【分析】先将除法转化为乘法进行计算,再根据分式的加减计算,即可求解.
    【详解】解:原式

    【点睛】本题考查了分式的混合运算,解题关键是熟练运用分式运算法则进行求解.
    20. 1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:
    如图,已知,是上一点,只用圆规将的圆周四等分.(按如下步骤完成,保留作图痕迹)

    ①以点为圆心,长为半径,自点起,在上逆时针方向顺次截取;
    ②分别以点,点圆心,长为半径作弧,两弧交于上方点;
    ③以点为圆心,长为半径作弧交于,两点.即点,,,将圆周四等分.
    【答案】见解析
    【解析】
    【分析】根据作图提示逐步完成作图即可.再根据图形基本性质进行证明即可.
    【详解】解:如图,

    即点,,,把的圆周四等分.
    理由如下:
    如图,连接,

    由作图可得:,且,
    ∴为等边三角形,,
    同理可得:,
    ∴,
    ∴A,O,D三点共线,为直径,
    ∴,
    设,而,
    ∴,,
    由作图可得:,而,
    ∴,,
    ∴由作图可得,
    而,
    ∴,
    ∴,
    同理,
    ∴点,,,把的圆周四等分.
    【点睛】本题考查的是等腰三角形的性质,圆弧与圆心角之间的关系,等边三角形的判定与性质,勾股定理与勾股定理的逆定理的应用,圆周角定理的应用,熟练掌握图形的基本性质并灵活应用于作图是解本题的关键.
    21. 为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:
    A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母,,,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.
    (1)求小亮从中随机抽到卡片的概率;
    (2)请用画树状图或列表的方法,求两人都抽到卡片的概率.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)本题考查了等可能时间的概率,带入公式即可求解;
    (2)先用列表法或树状图法列举出所有可能的情况,再带入公式计算即可.
    【小问1详解】
    (小亮抽到卡片).
    【小问2详解】
    列表如下:
    或画树状图如下:
    共有9种等可能的结果,两人都抽到卡片的结果有1种,
    所以,(两人都抽到卡片).
    【点睛】本题考查列举法求概率,正确用树状图或者列表法列举出所有情况,并找到符合条件的事件数量,正确带入公式计算是解题的关键.
    22. 如图1,某人的一器官后面处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:
    请你根据上表中的测量数据,计算新生物处到皮肤的距离.(结果精确到)(参考数据:,,,,,)
    【答案】新生物处到皮肤的距离约为
    【解析】
    【分析】过点作,垂足为,在,用 与的正切值表示出,在中,用和的正切值表示出,由,联立求解即可.
    【详解】解:过点作,垂足为.
    由题意得,,,
    在中,.
    在中,.

    ∵,
    ∴,
    ∴.
    答:新生物处到皮肤的距离约为.
    【点睛】本题主要考查了解直角三角形的应用,构造直角三角形,通过三角函数求解线段是求解本题的关键.
    四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.
    23. 某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用表示,分成6个等级:.;.;.;.;.;.).下面给出了部分信息:
    a.八年级学生上、下两个学期期末地理成绩的统计图如下:
    b.八年级学生上学期期末地理成绩在.这一组的成绩是:
    15,15,15,15,15,16,16,16,18,18
    c.八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:
    根据以上信息,回答下列问题:
    (1)填空:________;
    (2)若为优秀,则这200名学生八年级下学期期末地理成绩达到优秀的约有________人;
    (3)你认为该校八年级学生的期末地理成绩下学期比上学期有没有提高?请说明理由.
    【答案】(1)16 (2)35
    (3)八年级,理由见解析
    【解析】
    【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩;
    (2)根据样本估计总体即可求解;
    (3)根据平均成绩或中位数即可判断.
    【小问1详解】
    解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,
    由统计图知A组4人,B组10人,C组10人,则中位数在C组,第20、21位的成绩分别是16,16,
    则中位数是;
    故答案为:16;
    【小问2详解】
    解:(人),
    这200名学生八年级下学期期末地理成绩达到优秀的约有35人,
    故答案为:35;
    【小问3详解】
    解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.
    【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键.
    24. 如图,一次函数的图象与轴交于点,与反比例函数的图象交于点.

    (1)求点的坐标;
    (2)用的代数式表示;
    (3)当的面积为9时,求一次函数的表达式.
    【答案】(1)
    (2)
    (3)
    【解析】
    【分析】(1)把点代入,从而可得答案;
    (2)把点代入,从而可得答案;
    (3)利用三角形的面积先求解,可得的坐标,可得,代入再解决的值即可.
    【小问1详解】
    解:∵点在反比例函数的图象上,
    ∴,
    ∴.
    【小问2详解】
    ∵点在一次函数的图象上,
    ∴,
    即.
    【小问3详解】
    如图,连接.

    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴一次函数的表达式为:.
    【点睛】本题考查的是一次函数与反比例函数的综合应用,坐标与图形面积,熟练的利用待定系数法求解函数解析式是解本题的关键.
    25. 如图,内接于,是的直径,是上的一点,平分,,垂足为,与相交于点.

    (1)求证:是切线;
    (2)当的半径为,时,求的长.
    【答案】(1)见解析 (2)
    【解析】
    【分析】(1)根据同弧所对的圆周角相等,得出,根据得出,角平分线的定义得出,等量代换得出,进而得出,即,即可得证;
    (2)连接,得,则,进而证明,得出,解,得出,则,进而根据即可求解.
    【小问1详解】
    证明:∵,
    ∴.
    ∵,
    ∴.
    ∵平分,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴,即.
    ∵为的半径,
    ∴是的切线.
    【小问2详解】
    连接,得,
    ∴.
    ∵,
    ∴,
    ∵,
    ∴,
    ∴.
    ∵是的直径,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】本题考查了切线的判定定理,圆周角定理,全等三角形的性质与判定,解直角三角形,熟练掌握以上知识是解题的关键.
    26. 【模型建立】
    (1)如图1,和都是等边三角形,点关于的对称点在边上.
    ①求证:;
    ②用等式写出线段,,的数量关系,并说明理由.
    【模型应用】
    (2)如图2,是直角三角形,,,垂足为,点关于的对称点在边上.用等式写出线段,,的数量关系,并说明理由.
    【模型迁移】
    (3)在(2)的条件下,若,,求的值.

    【答案】(1)①见解析;②,理由见解析;(2),理由见解析;(3)
    【解析】
    【分析】(1)①证明:,再证明即可;②由和关于对称,可得.证明,从而可得结论;
    (2)如图,过点作于点,得,证明,.可得,证明,,可得,则,可得,从而可得结论;
    (3)由,可得,结合,求解,,如图,过点作于点.可得,,可得,再利用余弦的定义可得答案.
    【详解】(1)①证明:∵和都是等边三角形,
    ∴,,,
    ∴,
    ∴,
    ∴.
    ∴.

    ②.理由如下:
    ∵和关于对称,
    ∴.
    ∵,
    ∴.
    ∴.
    (2).理由如下:
    如图,过点作于点,得.

    ∵和关于对称,
    ∴,.
    ∵,∴,∴.
    ∴.
    ∵是直角三角形,,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    ∴,即.
    (3)∵,
    ∴,
    ∵,∴,∴.
    如图,过点作于点.

    ∵,
    ∴,

    ∴.
    ∴.
    【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,勾股定理的应用,轴对称的性质,锐角三角函数的灵活应用,本题难度较高,属于中考压轴题,作出合适的辅助线是解本题的关键.
    27. 如图1,抛物线与轴交于点,与直线交于点,点在轴上.点从点出发,沿线段方向匀速运动,运动到点时停止.
    (1)求抛物线的表达式;
    (2)当时,请在图1中过点作交抛物线于点,连接,,判断四边形的形状,并说明理由.
    (3)如图2,点从点开始运动时,点从点同时出发,以与点相同的速度沿轴正方向匀速运动,点停止运动时点也停止运动.连接,,求的最小值.
    【答案】(1)
    (2)四边形是平行四边形,理由见解析
    (3)
    【解析】
    【分析】(1)用待定系数法求二次函数解析式即可;
    (2)作交抛物线于点,垂足为,连接,,由点在上,可知,,连接,得出,则,当时,,进而得出,然后证明,即可得出结论;
    (3)由题意得,,连接.在上方作,使得,,证明,根据得出的最小值为,利用勾股定理求得,即可得解.
    【小问1详解】
    解:∵抛物线过点,
    ∴,
    ∴,
    ∴;
    【小问2详解】
    四边形是平行四边形.
    理由:如图1,作交抛物线于点,垂足为,连接,.
    ∵点在上,
    ∴,,
    连接,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    当时,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵轴,轴,
    ∴,
    ∴四边形是平行四边形;
    【小问3详解】
    如图2,由题意得,,连接.
    在上方作,使得,,
    ∵,,
    ∴,
    ∴,
    ∵,,,
    ∴,
    ∴,
    ∴(当,,三点共线时最短),
    ∴的最小值为,
    ∵,
    ∴,
    即的最小值为.
    【点睛】本题考查了二次函数的综合应用,待定系数法,平行四边形的性质与判定,勾股定理,全等三角形的判定和性质等知识,熟练掌握二次函数的图象和性质是解题的关键.年龄范围(岁)
    人数(人)
    25
    11
    10
    小刚
    小亮
    课题
    检测新生物到皮肤距离
    工具
    医疗仪器等
    示意图

    说明
    如图2,新生物在处,先在皮肤上选择最大限度地避开器官的处照射新生物,检测射线与皮肤的夹角为;再在皮肤上选择距离处的处照射新生物,检测射线与皮肤的夹角为.
    测量数据
    ,,
    学期
    平均数
    众数
    中位数
    八年级上学期
    15
    八年级下学期
    19

    相关试卷

    2024年甘肃省武威市中考数学模拟试题(解析版):

    这是一份2024年甘肃省武威市中考数学模拟试题(解析版),共28页。

    2024年甘肃省武威市中考数学模拟试题(原卷版):

    这是一份2024年甘肃省武威市中考数学模拟试题(原卷版),共9页。

    2024年甘肃省武威市中考数学试题(解析版):

    这是一份2024年甘肃省武威市中考数学试题(解析版),共25页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map