年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年甘肃省兰州市中考数学模拟试题(原卷版)

    2024年甘肃省兰州市中考数学模拟试题(原卷版)第1页
    2024年甘肃省兰州市中考数学模拟试题(原卷版)第2页
    2024年甘肃省兰州市中考数学模拟试题(原卷版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年甘肃省兰州市中考数学模拟试题(原卷版)

    展开

    这是一份2024年甘肃省兰州市中考数学模拟试题(原卷版),共11页。
    1.全卷共120分,考试时间120分钟.
    2.考生必须将姓名、准考证号、考场号、座位号等个人信息填(涂)写在答题卡上.
    3.考生务必将答案直接填(涂)写在答题卡的相应位置上.
    一、选择题(本大题共12小题,每小题3分,共36分)
    1. -5的相反数是( )
    A. B. C. 5D. -5
    2. 如图,直线与相交于点O,则( )
    A. B. C. D.
    3. 计算:( )
    A. B. C. 5D. a
    4. 如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角( )

    A. B. C. D.
    5. 方程的解是( )
    A. B. C. D.
    6. 如图1是一段弯管,弯管的部分外轮廓线如图2所示是一条圆弧,圆弧的半径,圆心角,则( )

    A. B. C. D.
    7. 已知二次函数,下列说法正确的是( )
    A. 对称轴为B. 顶点坐标为C. 函数的最大值是-3D. 函数的最小值是-3
    8. 关于x的一元二次方程有两个相等的实数根,则( )
    A -2B. 2C. -4D. 4
    9. 2022年我国新能源汽车销量持续增长,全年销量约为572.6万辆,同比增长91.7%,连续8年位居全球第一.下面的统计图反映了2021年、2022年新能源汽车月度销量及同比增长速度的情况.(2022年同比增长速度)根据统计图提供的信息,下列推断不合理的是( )

    A. 2021年新能源汽车月度销量最高是12月份,超过40万辆
    B. 2022年新能源汽车月度销量超过50万辆的月份有6个
    C. 相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%
    D 相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低
    10. 我国古代天文学确定方向方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a和直线外一定点O,过点O作直线与a平行.(1)以O为圆心,单位长为半径作圆,交直线a于点M,N;(2)分别在的延长线及上取点A,B,使;(3)连接,取其中点C,过O,C两点确定直线b,则直线.按以上作图顺序,若,则( )

    A. B. C. D.
    11. 一次函数的函数值y随x的增大而减小,当时,y的值可以是( )
    A. 2B. 1C. -1D. -2
    12. 如图,在矩形中,点E为延长线上一点,F为的中点,以B为圆心,长为半径的圆弧过与的交点G,连接.若,,则( )

    A. 2B. 2.5C. 3D. 3.5
    二、填空题(本大题共4小题,每小题3分,共12分)
    13. 因式分解:______.
    14. 如图,在中,,于点E,若,则______.

    15. 如图,将面积为7的正方形和面积为9的正方形分别绕原点O顺时针旋转,使,落在数轴上,点A,D在数轴上对应的数字分别为a,b,则______.

    16. 某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如下表:
    下面有三个推断:
    ①通过上述实验的结果,可以推断这枚瓶盖有很大的可能性不是质地均匀的;
    ②第2000次实验的结果一定是“盖面朝上”;
    ③随着实验次数的增大,“盖面朝上”的概率接近0.53.
    其中正确的是______.(填序号)
    三、解答题(本大题共12小题,共72分)
    17. 计算:.
    18. 计算:.
    19. 解不等式组:.
    20. 如图,反比例函数与一次函数的图象交于点,轴于点D,分别交反比例函数与一次函数的图象于点B,C.

    (1)求反比例函数与一次函数的表达式;
    (2)当时,求线段的长.
    21. 综合与实践
    问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在和上分别取点C和D,使得,连接,以为边作等边三角形,则就是的平分线.

    请写出平分的依据:____________;
    类比迁移:
    (2)小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边,上分别取,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线是的平分线,请说明此做法的理由;
    拓展实践:
    (3)小明将研究应用于实践.如图4,校园的两条小路和,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)

    22. 如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得、,.求“龙”字雕塑的高度.(B,C,D三点共线,.结果精确到0.1m)(参考数据:,,,,,)

    23. 一名运动员在高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面的高度与离起跳点A的水平距离之间的函数关系如图所示,运动员离起跳点A的水平距离为时达到最高点,当运动员离起跳点A的水平距离为时离水面的距离为.

    (1)求y关于x的函数表达式;
    (2)求运动员从起跳点到入水点的水平距离的长.
    24. 如图,矩形的对角线与相交于点O,,直线是线段的垂直平分线,分别交于点F,G,连接.

    (1)判断四边形的形状,并说明理由;
    (2)当时,求的长.
    25. 某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情况,从中随机抽取40名男生进行测试,对数据进行整理、描述和分析,下面是给出的部分信息.
    信息一:排球垫球成绩如下图所示(成绩用x表示,分成六组:A. ;B. ;C. ;D. ;E. ;F. ).

    信息二:排球垫球成绩在D. 这一组的是:
    20,20,21,21,21,22,22,23,24,24
    信息三:掷实心球成绩(成绩用y表示,单位:米)的人数(频数)分布表如下:
    信息四:这次抽样测试中6名男生的两项成绩的部分数据如下:
    根据以上信息,回答下列问题:
    (1)填空:______;
    (2)下列结论正确的是_____;(填序号)
    ①排球垫球成绩超过10个的人数占抽取人数的百分比低于60%;
    ②掷实心球成绩的中位数记为n,则;
    ③若排球垫球成绩达到22个及以上时,成绩记为优秀.如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀.
    (3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请估计全年级男生排球垫球成绩达到优秀的人数.
    26. 如图,内接于,是的直径,,于点,交于点,交于点,,连接.

    (1)求证:是的切线;
    (2)判断形状,并说明理由;
    (3)当时,求的长.
    27. 在平面直角坐标系中,给出如下定义:为图形上任意一点,如果点到直线的距离等于图形上任意两点距离的最大值时,那么点称为直线的“伴随点”.
    例如:如图1,已知点,,在线段上,则点是直线:轴的“伴随点”.

    (1)如图2,已知点,,是线段上一点,直线过,两点,当点是直线的“伴随点”时,求点的坐标;
    (2)如图3,轴上方有一等边三角形,轴,顶点在轴上且在上方,,点是上一点,且点是直线:轴的伴随点.当点到轴的距离最小时,求等边三角形的边长;
    (3)如图4,以,,为顶点的正方形上始终存在点,使得点是直线:的伴随点.请直接写出的取值范围.
    28.
    综合与实践
    【思考尝试】
    (1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边上一点,于点F,,,.试猜想四边形的形状,并说明理由;
    【实践探究】
    (2)小睿受此问题启发,逆向思考并提出新问题:如图2,在正方形中,E是边上一点,于点F,于点H,交于点G,可以用等式表示线段,,的数量关系,请你思考并解答这个问题;
    【拓展迁移】
    (3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形中,E是边上一点,于点H,点M在上,且,连接,,可以用等式表示线段,的数量关系,请你思考并解答这个问题.
    累计抛掷次数
    50
    100
    200
    300
    500
    1000
    2000
    3000
    5000
    盖面朝上次数
    28
    54
    106
    158
    264
    527
    1056
    1587
    2850
    盖面朝上频率
    分组
    人数
    2
    m
    10
    9
    6
    2
    学生
    学生1
    学生2
    学生3
    学生4
    学生5
    学生6
    排球垫球
    26
    25
    23
    22
    22
    15
    掷实心球

    7.8
    7.8

    8.8
    9.2

    相关试卷

    2024年甘肃省兰州市中考数学模拟试题(原卷版):

    这是一份2024年甘肃省兰州市中考数学模拟试题(原卷版),共11页。

    2024年甘肃省兰州市中考数学模拟试题(解析版):

    这是一份2024年甘肃省兰州市中考数学模拟试题(解析版),共28页。

    甘肃省兰州市2024年中考数学模拟汇编试题(原卷版):

    这是一份甘肃省兰州市2024年中考数学模拟汇编试题(原卷版),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map