所属成套资源:中考数学一轮复习知识点梳理+题型训练 (2份,原卷版+解析版)
中考数学一轮复习知识点梳理+题型训练专题16 图形的初步认识(2份,原卷版+解析版)
展开
这是一份中考数学一轮复习知识点梳理+题型训练专题16 图形的初步认识(2份,原卷版+解析版),文件包含中考数学一轮复习知识点梳理+题型训练专题16图形的初步认识原卷版doc、中考数学一轮复习知识点梳理+题型训练专题16图形的初步认识解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
【知识要点】
知识点一 几何图形
几何图形的概念: 我们把实物中抽象出来的各种图形叫做几何图形,几何图形分为平面图形和立体图形。
立体图形的概念:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
【常见的立体图形的种类】棱柱、棱锥、圆柱、圆锥、球等。
平面图形的概念:图形所表示的各个部分在同一平面内的图形,如三角形、正方形。
【常见的平面图形的种类】线段、角、三角形、长方形、圆等。
立体图形和平面的区别:
1)所含平面数量不同:
①平面图形是各个部分存在于一个平面上的图形;
②立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
①根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的;
②而立体图形是由不同的平面图形构成的,由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
①平面图形只能从一个角度观察;
②立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
①平面图形只有长宽属性,没有高度;
①而立体图形具有长宽高的属性。
立方体图形平面展开图
立体图形的三视图:从正面,左面,上面观察立体图形,并画出观察界面。
【考查类型】
1)会判断简单立体图形(直棱柱、圆柱、圆锥、球)的三视图。
2)能根据三视图描述基本几何体或实物原型。
3)正方体展开图(共计11种):
口诀:1)“一四一”“一三二”,“一”在同层可任意,
2)“三个二”成阶梯,
3)“二个三”“日”相连,异层必有“日”,“凹”“田”不能有,掌握此规律,运用定自如。
几何图形的组成:1)点:线和线相交的地方是点,它是几何图形最基本的图形。
2)线:面和面相交的地方是线,分为直线和曲线。
3)面:包围着体的是面,分为平面和曲面。
4)体:几何体也简称体。
组成几何图形元素的关系:点动成线,线动成面,面动成体。
【扩展】
多面体的顶点数V、棱数E、面数F之间存在关系式:.
考查题型一 立体图形
题型1.(2022·河北·中考真题)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )
A.①③B.②③C.③④D.①④
【答案】D
【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能 构成长方体,①④组合符合题意
【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意
故选D
【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.
题型1-1.(2022·北京·中考真题)下面几何体中,是圆锥的为( )
A.B.C.D.
【答案】B
【分析】观察所给几何体,可以直接得出答案.
【详解】解:A选项为圆柱,不合题意;
B选项为圆锥,符合题意;
C选项为三棱锥,不合题意;
D选项为球,不合题意;
故选B.
【点睛】本题考查常见几何体的识别,熟练掌握常见几何体的特征是解题的关键.圆锥面和一个截它的平面,组成的空间几何图形叫圆锥.
题型1-2.(2022·山东威海·中考真题)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是( )
A.B.C.D.
【答案】B
【分析】三视图分为主视图,左视图和俯视图,俯视图是从上往下看,进而得出答案.
【详解】解:俯视图从上往下看如下:
故选:B.
【点睛】本题主要考查了三视图,熟练地掌握主视图,左视图和俯视图是解决本题的关键.
题型1-3.(2021·贵州安顺·中考真题)下列几何体中,圆柱体是( )
A.B.C.D.
【答案】C
【分析】根据圆柱体的定义,逐一判断选项,即可.
【详解】解:A. 是圆锥,不符合题意;
B. 是圆台,不符合题意;
C. 是圆柱,符合题意;
D. 是棱台,不符合题意,
故选C.
【点睛】本题主要考查几何体的认识,掌握圆锥、圆柱、圆台、棱台的定义,是解题的关键.
考查题型二 几何体展开图的认识
题型2.(2022·四川广元·中考真题)如图是某几何体的展开图,该几何体是( )
A.长方体B.圆柱C.圆锥D.三棱柱
【答案】B
【分析】根据几何体的展开图可直接进行排除选项.
【详解】解:由图形可得该几何体是圆柱;
故选B.
【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.
题型2-1.(2022·广东广州·中考真题)如图是一个几何体的侧面展开图,这个几何体可以是( )
A.圆锥B.圆柱C.棱锥D.棱柱
【答案】A
【分析】由图可知展开侧面为扇形,则该几何体为圆锥.
【详解】该几何体的侧面展开图是扇形,所以这个几何体可能是圆锥,
故选:A.
【点睛】此题主要考查几何体的展开图,熟记几何体的侧面展开图是解题的关键.
题型2-2.(2022·江苏常州·中考真题)下列图形中,为圆柱的侧面展开图的是( )
A.B.C.D.
【答案】D
【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.
【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,
得到其侧面展开图是对边平行且相等的四边形;
又有母线垂直于上下底面,故可得是矩形.
故选:D.
【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.
题型2-3.(2022·江苏泰州·中考真题)如图为一个几何体的表面展开图,则该几何体是( )
A.三棱锥B.四棱锥C.四棱柱D.圆锥
【答案】B
【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.
【详解】解:由图可知,底面为四边形,侧面为三角形,
∴该几何体是四棱锥,
故选:B.
【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.
题型2-4.(2021·浙江·中考真题)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是( )
A.B.C.D
【答案】A
【分析】依据长方体的展开图的特征进行判断即可.
【详解】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;
B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;
C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;
D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.
故选:A.
【点睛】本题考查了长方体的展开图,熟练掌握长方体的展开图的特点是解题的关键.
考查题型三 正方体展开图的识别
题型3.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是( )
A.B.C.D.
【答案】C
【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.
【详解】解:根据正方体展开图特点可得C答案可以围成正方体,
故选:C.
【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.
题型3-1.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是( )
A.B.C.D.
【答案】D
【分析】利用正方体及其表面展开图的特点解题.
【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.
故选:D.
【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.
题型3-2.(2021·广东·中考真题)下列图形是正方体展开图的个数为( )
A.1个B.2个C.3个D.4个
【答案】C
【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.
【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.
故选:C.
【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.
题型3-3.(2022·贵州六盘水·中考真题)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是( )
A.①B.②C.③D.④
【答案】A
【分析】根据正方体展开图分析即可求解.
【详解】根据正方体展开图分析,
①的对面是⑤,不能裁掉①
故选A
【点睛】本题考查了正方体的表面展开图,理正方体的表面展开图的模型是解题的关键.正方体的表面展开图用‘口诀’:一线不过四,田凹应弃之,相间、Z端是对面,间二、拐角邻面知.
考查题型四 正方体展开图上相对两个面上字/图案
题型4.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是( )
A.合B.同C.心D.人
【答案】D
【分析】根据正方体的展开图进行判断即可;
【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;
故选:D.
【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.
题型4-1.(2022·江苏徐州·中考真题)如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是( )
A.B.C.D.
【答案】D
【分析】根据骰子表面展开后,其相对面的点数之和是7,逐项判断即可作答.
【详解】A项,2的对面是4,点数之和不为7,故A项错误;
B项,2的对面是6,点数之和不为7,故B项错误;
C项,2的对面是6,点数之和不为7,故C项错误;
D项,1的对面是6,2的对面是5,3的对面是4,相对面的点数之和都为7,故D项正确;
故选:D.
【点睛】本题主要考查了立体图形的侧面展开图的知识,解答时,找准相对面是解答本题的关键.没有共同边的两个面即为相对的面.
题型4-2.(2022·山东淄博·中考真题)经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是( )
A.B.C.D.
【答案】C
【分析】根据正方体侧面上的字恰好环绕组成一个四字成语,即是正方体的表面展开图,相对的面之间一定相隔一个正方形,且有两组相对的面,根据这一特点作答.
【详解】解∶由正方体的表面展开图,相对的面之间一定相隔一个正方形可知,
A.“心”、“想”、“事”、“成”四个字没有相对的面,故不符合题意;
B.“吉”、“祥”、“如”、“意”四个字没有相对的面,故不符合题意;
C.“金”与“题”相对,“榜”、“名”是相对的面,故符合题意;
D.“马”、“到”、“成”、“功”四个字没有相对的面,故不符合题意;
故选∶C.
【点睛】本题主要考查了正方体相对两个面上的文字,明确正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.
题型4-3.(2021·河北·中考真题)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( )
A.代表B.代表
C.代表D.代表
【答案】A
【分析】根据正方体展开图的对面,逐项判断即可.
【详解】解:由正方体展开图可知,的对面点数是1;的对面点数是2;的对面点数是4;
∵骰子相对两面的点数之和为7,
∴代表,
故选:A.
【点睛】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.
题型4-4.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.
【答案】月
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.
故答案为:月.
【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.
考查题型五 用七巧板拼图案
题型5.(2022·四川·巴中市教育科学研究所中考真题)七巧板是我国的一种传统智力玩具,下列用七巧板拼成的图形是轴对称图形的是( )
A.B.C.D.
【答案】D
【分析】根据轴对称图形的定义去逐一判断即可.
【详解】解:A不是轴对称图形,不符合题意,
B不是轴对称图形,不符合题意,
C不是轴对称图形,不符合题意,
D是轴对称图形,符合题意,
故选D.
【点睛】本题考查了轴对称图形的定义,准确理解定义是解题的关键.
题型5-1.(2021·山东枣庄·中考真题)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有( )
A.搭配①B.搭配②C.搭配③D.搭配④
【答案】D
【分析】将每个搭配的两组积木进行组合,检验是否可得出图中剩下的九个空格的形状,由此即可得出答案.
【详解】解:搭配①、②、③两组积木组合在一起,均可组合成图中剩下的九个空格的形状,只有搭配④不能,
故选:D.
【点睛】本题考查了图形的剪拼,解题关键是培养学生的空间想象能力以及组合意识.
题型5-2.(2022·江西·中考真题)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.
【答案】
【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题.
【详解】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,
∴根据勾股定理可知,长方形的对角线长:.
故答案为:.
【点睛】本题主要考查了正方形的性质,七巧板,矩形的性质,勾股定理,解决本题的关键是所拼成的正方形的特点确定长方形的长与宽.
知识点二 直线、射线、线段
【射线的表示方法】表示射线时端点一定在左边,而且不能度量,射线BA和射线AB是不同的射线。
经过若干点画直线数量:1)经过两点有一条直线,并且只有一条直线(直线公理)。
2)过三个已知点不一定能画出直线。
①当三个已知点在一条直线上时,可以画出一条直线;
②当三个已知点不在一条直线上时,不能画出直线。
线段的大小比较方法:1)度量法:分别用刻度尺测量线段AB、线段CD的长度,再进行比较
2)叠加法:让线段某一段端点重合,比较另一边两端点的位置。
线段中点的概念:把一条线段分成两条相等的线段的点叫线段中点。
距离的概念:连接两点间的线段的长度,叫做这两点的距离。两点的所有连线中,线段最短。简称:两点之间,线段最短。
考查题型六 两点确定一条直线
题型6.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )
A.两点之间,线段最短B.两点确定一条直线
C.垂线段最短D.三角形两边之和大于第三边
【答案】B
【分析】由直线公理可直接得出答案.
【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.
故选:B.
【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.
题型6-1.(2021·河北·中考真题)如图,已知四条线段,,,中的一条与挡板另一侧的线段在同一直线上,请借助直尺判断该线段是( )
A.B.
C.D.
【答案】A
【分析】根据直线的特征,经过两点有一直线并且只有一条直线即可判断.
【详解】解:设线段m与挡板的交点为A,a、b、c、d与挡板的交点分别为B,C,D,E,
连结AB、AC、AD、AE,
根据直线的特征经过两点有且只有一条直线,
利用直尺可确定线段a与m在同一直线上,
故选择A.
【点睛】本题考查直线的特征,掌握直线的特征是解题关键.
题型6-2.(2021·浙江·中考真题)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中的长应是______.
【答案】
【分析】根据裁剪和拼接的线段关系可知,,在中应用勾股定理即可求解.
【详解】解:∵地毯平均分成了3份,
∴每一份的边长为,
∴,
在中,根据勾股定理可得,
根据裁剪可知,
∴,
故答案为:.
【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.
题型6-3.(2021·山东临沂·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).
①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;
②车轮做成圆形,应用了“圆是中心对称图形”;
③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;
④地板砖可以做成矩形,应用了“矩形对边相等”.
【答案】①
【分析】根据直线的性质,圆的性质,特殊四边形的性质分别判断即可.
【详解】解:①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故正确;
②车轮做成圆形,应用了“同圆的半径相等”,故错误;
③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的四边相等”,故错误;
④地板砖可以做成矩形,应用了“矩形的四个角是直角,可以密铺”,故错误;
故答案为:①.
【点睛】本题考查了直线的性质,圆的性质,特殊四边形的性质,都属于基本知识,解题的关键是联系实际,掌握相应性质定理.
考查题型七 线段的和与差
题型7.(2022·山东临沂·中考真题)如图,,位于数轴上原点两侧,且.若点表示的数是6,则点表示的数是( )
A.-2B.-3C.-4D.-5
【答案】B
【分析】根据,点表示的数是6,先求解 再根据A的位置求解A对应的数即可.
【详解】解:由题意可得:点表示的数是6,且B在原点的右侧,
,
在原点的左侧,
表示的数为
故选B
【点睛】本题考查的是线段的和差倍分关系,数轴上的点所对应的数的表示,熟悉数轴的组成与数轴上数的分布是解本题的关键.
题型7-1.(2021·江苏泰州·中考真题)互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是( )
A.点A在B、C两点之间B.点B在A、C两点之间
C.点C在A、B两点之间D.无法确定
【答案】A
【分析】分别对每种情况进行讨论,看a的值是否满足条件再进行判断.
【详解】解:①当点A在B、C两点之间,则满足,
即,
解得:,符合题意,故选项A正确;
②点B在A、C两点之间,则满足,
即,
解得:,不符合题意,故选项B错误;
③点C在A、B两点之间,则满足,
即,
解得:a无解,不符合题意,故选项C错误;
故选项D错误;
故选:A.
【点睛】本题主要考查了线段的和与差及一元一次方程的解法,分类讨论并列出对应的式子是解本题的关键.
题型7-2.(2021·内蒙古·中考真题)已知线段,在直线AB上作线段BC,使得.若D是线段AC的中点,则线段AD的长为( )
A.1B.3C.1或3D.2或3
【答案】C
【分析】先分C在AB上和C在AB的延长线上两种情况,分别画出图形,然后运用中点的定义和线段的和差进行计算即可.
【详解】解:如图:当C在AB上时,AC=AB-BC=2,
∴AD=AC=1
如图:当C在AB的延长线上时,AC=AB+BC=6,
∴AD=AC=3
故选C.
【点睛】本题主要考查了线段的和差、中点的定义以及分类讨论思想,灵活运用分类讨论思想成为解答本题的关键.
题型7-3.(2022·浙江嘉兴·中考真题)如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.
【答案】
【分析】先求解 再利用线段的和差可得答案.
【详解】解:由题意可得:
同理:
故答案为:
【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.
考查题型八 两点之间线段最短
题型8.(2022·浙江金华·中考真题)如图,圆柱的底面直径为,高为,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )
A.B.C.D
【答案】C
【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;
【详解】解:∵AB为底面直径,
∴将圆柱侧面沿“剪开”后, B点在长方形上面那条边的中间,
∵两点之间线段最短,
故选: C.
【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.
题型8-1.(2022·广西柳州·中考真题)如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是( )
A.①B.②C.③D.④
【答案】B
【分析】根据两点之间线段最短进行解答即可.
【详解】解:∵两点之间线段最短,
∴从学校A到书店B有①、②、③、④四条路线中,最短的路线是②,故B正确.
故选:B.
【点睛】本题主要考查了两点之间线段最短,解题的关键是熟练掌握两点之间所有连线中,线段最短.
题型8-2.(2021·江苏南京·中考真题)下列长度的三条线段与长度为5的线段能组成四边形的是( )
A.1,1,1B.1,1,8C.1,2,2D.2,2,2
【答案】D
【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.
【详解】A、1+1+1
相关试卷
这是一份中考数学一轮复习知识点梳理+题型训练专题38 概率(2份,原卷版+解析版),文件包含中考数学一轮复习知识点梳理+题型训练专题38概率原卷版doc、中考数学一轮复习知识点梳理+题型训练专题38概率解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份中考数学一轮复习知识点梳理+题型训练专题33 图形的相似(2份,原卷版+解析版),文件包含中考数学一轮复习知识点梳理+题型训练专题33图形的相似原卷版doc、中考数学一轮复习知识点梳理+题型训练专题33图形的相似解析版doc等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。
这是一份中考数学一轮复习知识点梳理+题型训练专题31 平移与旋转(2份,原卷版+解析版),文件包含中考数学一轮复习知识点梳理+题型训练专题31平移与旋转原卷版doc、中考数学一轮复习知识点梳理+题型训练专题31平移与旋转解析版doc等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。