年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(原卷版).doc
    • 知识
      中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(解析版).doc
    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(原卷版)第1页
    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(原卷版)第2页
    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(原卷版)第3页
    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(解析版)第1页
    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(解析版)第2页
    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(解析版)第3页
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(2份,原卷版+解析版)

    展开

    这是一份中考数学一轮复习知识梳理+考点精讲专题18 全等三角形(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题18全等三角形原卷版doc、中考数学一轮复习知识梳理+考点精讲专题18全等三角形解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
    中考命题解读
    全等三角形主要包括全等图形、全等三角形的概念与性质,全等三角形的判定和角平分线的性质。在中考中,全等三角形的直接考查主要以选择和填空为主,有时也会以证明的形式考查,难度一般较小;但大多数情况下,全等三角形的知识多作为工具性质与其他几何知识结合,用于辅助证明线段相等、角相等,考查面较广,难度较大,需要考生能够熟练运用全等三角形的性质和判定定理。
    考标要求
    1.熟悉全等三角形常考5种模型
    2.掌握全等三角形性质,并运用全等三角形性质解答。
    考点精讲
    考点1:全等三角形的概念及性质
    考点2:全等三角形的判定
    模型一:平移型
    模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.
    模型示例

    模型二:轴对称模型
    模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.
    模型三:旋转型
    模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:
    ①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角
    ②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.

    模型四:一线三垂直型
    模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角
    9
    模型五:半角模型
    1、等边角形半角

    作辅助线:延长FC到G,使得CG=BE,连接DG
    结论:▲DEF≌▲DGF;EF=BE+CF
    2、正方形含半角

    作辅助线:延长CB到G,使得CG=DF,连接AG
    结论:▲AEF≌▲AGE;EF=BE+DF
    母题精讲
    【典例1】(2021秋•余干县期中)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.
    (1)求证:△ACE≌△BDF;
    (2)若∠A=40°,∠D=80°,求∠E的度数.
    【答案】(1) 略 (2)∠E的度数为60°
    【解答】证明:(1)∵EA∥FB,
    ∴∠A=∠FBD,
    ∵AB=CD,
    ∴AB+BC=CD+BC,
    即AC=BD,
    在△EAC与△FBD中,

    ∴△EAC≌△FBD(SAS);
    (2)∵△EAC≌△FBD,
    ∴∠ECA=∠D=80°,
    ∵∠A=40°,
    ∴∠E=180°﹣40°﹣80°=60°,
    答:∠E的度数为60°.
    【典例2】(2021•长安区一模)如图,△ABC和△EBD都是等边三角形,连接AE,CD.求证:AE=CD.
    【答案】略
    【解答】证明:∵△ABC和△EBD都是等边三角形,
    ∴AB=CB,BE=BD,
    ∴∠ABC=∠DBE=60°,
    ∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
    即∠ABE=∠CBD,
    在△ABE和△CBD中,

    ∴△ABE≌△CBD(SAS),
    ∴AE=CD.
    【典例3】(2020春•海淀区校级期末)如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.
    (1)求证:△BCE≌△CAD;
    (2)请直接写出AD,BE,DE之间的数量关系: .
    【答案】(1)略 (2)AD=BE+DE
    【解答】证明:(1)∵BE⊥CE,AD⊥CE,
    ∴∠E=∠ADC=90°,
    ∴∠EBC+∠BCE=90°.
    ∵∠BCE+∠ACD=90°,
    ∴∠EBC=∠DCA,
    在△BCE和△CAD中,

    ∴△BCE≌△CAD(AAS);
    (2)∵△BCE≌△CAD,
    ∴BE=DC,AD=CE,
    ∴AD=CE=CD+DE=BE+DE,
    故答案为:AD=BE+DE.
    真题精选
    模型1 平移型
    1.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.
    (1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.
    你选取的条件为(填写序号) (只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是 (填“SSS”或“SAS”或“ASA”或“AAS”);
    (2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.
    【解答】(1)解:在△ABC和△DEF中,

    ∴△ABC≌△DEF(SSS),
    ∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,
    选取的条件为①,判定△ABC≌△DEF的依据是SSS.
    故答案为:①,SSS;(答案不唯一).
    (2)证明:∵△ABC≌△DEF.
    ∴∠A=∠EDF,
    ∴AB∥DE.
    模型2 对称型
    2.(2022•长沙)如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.
    (1)求证:△ABC≌△ADC;
    (2)若AB=4,CD=3,求四边形ABCD的面积.
    【解答】(1)证明:∵AC平分∠BAD,
    ∴∠BAC=∠DAC,
    ∵CB⊥AB,CD⊥AD,
    ∴∠B=90°=∠D,
    在△ABC和△ADC中,

    ∴△ABC≌△ADC(AAS);
    (2)解:由(1)知:△ABC≌△ADC,
    ∴BC=CD=3,S△ABC=S△ADC,
    ∴S△ABC=AB•BC=×4×3=6,
    ∴S△ADC=6,
    ∴S四边形ABCD=S△ABC+S△ADC=12,
    答:四边形ABCD的面积是12.
    模型3 旋转型
    3.(2021•广东模拟)如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.
    (1)求证:△AEC≌△ADB.
    (2)求∠BFC的度数.
    【答案】(1)略 (2)∠BFC=90°
    【解答】(1)证明:∵∠BAC=∠DAE,
    ∴∠BAC+∠CAD=∠DAE+∠CAD,
    即∠BAD=∠CAE,
    在△BAD与△CAE中,

    ∴△BAD≌△CAE(SAS),
    (2)解:由(1)知,△BAD≌△CAE,
    ∴∠ABD=∠ACE,BD=CE,
    ∵∠BAC=90°,
    ∴∠CBF+∠BCF=∠ABC+∠ACB=90°,
    ∴∠BFC=90°.
    4.(2022•黑龙江)△ABC和△ADE都是等边三角形.
    (1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);
    (2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
    (3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
    【解答】解:(2)PB=PA+PC,理由如下:
    如图②,在BP上截取BF=PC,连接AF,
    ∵△ABC、△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
    ∴∠BAC+∠CAD=∠CAD+∠DAE,
    即∠DAB=∠EAC,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,
    ∵AB=AC,BF=CP,
    ∴△BAF≌△CAP(SAS),
    ∴AF=AP,∠BAF=∠CAP,
    ∴∠BAC=∠PAF=60°,
    ∴△AFP是等边三角形,
    ∴PF=PA,
    ∴PB=BF+PF=PC+PA;
    (3)PC=PA+PB,理由如下:
    如图③,在PC上截取CM=PB,连接AM,
    同理得:△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,
    ∵AB=AC,PB=CM,
    ∴△AMC≌△APB(SAS),
    ∴AM=AP,∠BAP=∠CAM,
    ∴∠BAC=∠PAM=60°,
    ∴△AMP是等边三角形,
    ∴PM=PA,
    ∴PC=PM+CM=PA+PB.
    模型4 一线三等角
    等角
    5.(2022•益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.
    【解答】证明:∵DE⊥AC,∠B=90°,
    ∴∠DEC=∠B=90°,
    ∵CD∥AB,
    ∴∠A=∠DCE,
    在△CED和△ABC中,

    ∴△CED≌△ABC(ASA).
    概念
    两个能完全重合的三角形叫做全等三角形.
    性质
    1.两全等三角形的对应边相等,对应角相等.
    2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.
    3.全等三角形的周长、面积相等.

    相关试卷

    中考数学一轮复习知识梳理+考点精讲专题31 统计和概率(2份,原卷版+解析版):

    这是一份中考数学一轮复习知识梳理+考点精讲专题31 统计和概率(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题31统计和概率原卷版doc、中考数学一轮复习知识梳理+考点精讲专题31统计和概率解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    中考数学一轮复习知识梳理+考点精讲专题29 视图与投影(2份,原卷版+解析版):

    这是一份中考数学一轮复习知识梳理+考点精讲专题29 视图与投影(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题29视图与投影原卷版doc、中考数学一轮复习知识梳理+考点精讲专题29视图与投影解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    中考数学一轮复习知识梳理+考点精讲专题28 尺规作图(2份,原卷版+解析版):

    这是一份中考数学一轮复习知识梳理+考点精讲专题28 尺规作图(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题28尺规作图原卷版doc、中考数学一轮复习知识梳理+考点精讲专题28尺规作图解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map