中考数学一轮复习知识梳理+考点精讲专题19 相似三角形(2份,原卷版+解析版)
展开
这是一份中考数学一轮复习知识梳理+考点精讲专题19 相似三角形(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题19相似三角形原卷版doc、中考数学一轮复习知识梳理+考点精讲专题19相似三角形解析版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
中考命题解读
相似三角形的应用在中考中主要考察热点有:8字图、A字图等简单相似模型。出题类型可以是选择填空这类小题,也可以是18~19这类解答题,难度通常不大,问题背景多以现实中的实物如树高、楼高、物体尺寸等为背景,提炼出数学模型,进而利用(或构造)简单相似模型求解长度等问题。
考标要求
1.比例的基本性质,线段的比。成比例线段
2.认识图形的相似,探索相似图形的性质
3.相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方
4.两个三角形相似的概念,图形的位似
5.探索两个三角形相似的条件
6.利用位似将一个图形放大或缩小
考点精讲
考点1:平行线分线段成比例定理
1、比例线段的有关概念:在比例式()中,、叫外项,、叫内项,、叫前项,、叫后项,叫第四比例项,如果,那么叫做、的比例中项.
2、把线段AB分成两条线段AC和BC,使,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
比例性质:
;;
;
4、平行线分线段成比例定理
(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.
如图,已知∥∥,可得
等.
(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE∥BC可得:.此推论较原定理应用更加广泛.
(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.
此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.
定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.
考点2:相似三角形的性质
性质1:相似三角形的对应角相等,对应边对应成比例.
性质2:相似三角形中的重要线段的比等于相似比.
相似三角形对应高,对应中线,对应角平分线的比都等于相似比.
注意:要特别注意“对应”两个字,在应用时,要注意找准对应线段.
性质3:相似三角形周长的比等于相似比
如图一: ∽,则
由比例性质可得:
图一
性质4:相似三角形面积的比等于相似比的平方
如图二,∽,则分别作出与的高和,则
图二
考点3 :相似三角形的判定
1.判定方法(1)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.
2.判定方法(2):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
3.判定方法(3):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.
4.判定方法(4):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
相似三角形的基本图形:
母题精讲
【典例1】(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.
(1)若AB=8,求线段AD的长.
(2)若△ADE的面积为1,求平行四边形BFED的面积.
真题精选
命题点1 相似三角形的有关计算
1.(2022•兰州)已知△ABC∽△DEF,=,若BC=2,则EF=( )
A.4B.6C.8D.16
2.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1:B.1:2C.1:3D.1:4
3.(2022•百色)已知△ABC与△A'B'C'是位似图形,位似比是1:3,则△ABC与△A'B'C'的面积比是( )
A.1:3B.1:6C.1:9D.3:1
4.(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )
A.B.C.D.
5.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )
A.B.C.D.
6.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )
A.9B.12C.15D.18
7.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .
命题点 相似三角形的实际应用
8.(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为 米
9.(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是 米.
10.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为 米.
11.(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.
12.(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.
1、“A”字型
DE∥BC
2、“X”字型
AB∥CD
3、斜交型
∠1=∠2
4、蝴蝶型
∠A=∠D或∠B=∠C
5、双垂型
,
6、双垂型拓展图
∠ABD=∠C
相关试卷
这是一份中考数学一轮复习知识梳理+考点精讲专题31 统计和概率(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题31统计和概率原卷版doc、中考数学一轮复习知识梳理+考点精讲专题31统计和概率解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题29 视图与投影(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题29视图与投影原卷版doc、中考数学一轮复习知识梳理+考点精讲专题29视图与投影解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题28 尺规作图(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题28尺规作图原卷版doc、中考数学一轮复习知识梳理+考点精讲专题28尺规作图解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。