中考数学一轮复习知识梳理+考点精讲专题20 锐角三角函数(2份,原卷版+解析版)
展开
这是一份中考数学一轮复习知识梳理+考点精讲专题20 锐角三角函数(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题20锐角三角函数原卷版doc、中考数学一轮复习知识梳理+考点精讲专题20锐角三角函数解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
中考命题解读
1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;
2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.
考标要求
1、理解锐角三角函数的定义,并熟练记忆特殊角的三角函数值.
2、会用锐角三角函数值解决实际问题。
考点精讲
考点1:锐角三角函数的概念
如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.
锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;
锐角A的邻边与斜边的比叫做∠A的余弦,记作csA,即;
锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.
同理;;.
考点2:特殊角的三角函数值
利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:
考点3:解直角三角形
在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.
在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.
设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:
①三边之间的关系:a2+b2=c2(勾股定理).
②锐角之间的关系:∠A+∠B=90°.
③边角之间的关系:
,,,
,,.
④,h为斜边上的高.
注意:
(1)直角三角形中有一个元素为定值(直角为90°),是已知值.
(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).
(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.
考点4: 解直角三角形的常见类型及解法
注意:
1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.
2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.
考点5:解直角三角形的应用
(1)坡度坡角
在用直角三角形知识解决实际问题时,经常会用到以下概念:
(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.
坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.
(2)仰角俯角问题
仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.
(3)方位角问题
方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.
(2)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.
注意:
1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.
2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.
3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.
母题精讲
【典例1】(2022•柳州)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=,堤坝高BC=30m,则迎水坡面AB的长度为 m.
【典例2】(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sinA= .
【典例3】(2022•贵港)如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )
A.8(3﹣)mB.8(3+)mC.6(3﹣)mD.6(3+)m
【典例4】(2022•河池)如图,小敏在数学实践活动中,利用所学知识对他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cs33°≈0.84,tan33°≈0.65).
【典例5】(2022•郴州)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B之间的距离.
(参考数据:≈1.41,≈1.73.结果精确到0.1m)
【典例6】(2022•朝阳)某数学兴趣小组准备测量校园内旗杆顶端到地面的高度(旗杆底端有台阶).该小组在C处安置测角仪CD,测得旗杆顶端A的仰角为30°,前进8m到达E处,安置测角仪EF,测得旗杆顶端A的仰角为45°(点B,E,C在同一直线上),测角仪支架高CD=EF=1.2m,求旗杆顶端A到地面的距离即AB的长度.(结果精确到1m.参考数据:≈1.7)
真题精选
命题点1 锐角三角函数
1.(2021•天津)tan30°的值等于( )
A.B.C.1D.2
2.(2019•怀化)已知∠α为锐角,且sinα=,则∠α=( )
A.30°B.45°C.60°D.90°
3.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sinA=,则AB的长是( )
A.B.C.60D.80
4.(2021•宜昌)如图,△ABC的顶点是正方形网格的格点,则cs∠ABC的值为( )
A.B.C.D.
5.(2021•玉林)如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有( )
A.h1=h2B.h1<h2
C.h1>h2D.以上都有可能命题点2 锐角三角函数的实际应用
模型一:单个直角三角形
8.(2021•福建)如图,某研究性学习小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得∠A=60°,∠C=90°,AC=2km.据此,可求得学校与工厂之间的距离AB等于( )
A.2kmB.3kmC.kmD.4km
9.(2021•金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为( )
A.4csα米B.4sinα米C.4tanα米D.米
模型二:背靠背型
10.(2022•甘南州)如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.
11.(2021•镇江)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).
12.(2021•柳州)在一次海上救援中,两艘专业救助船A、B同时收到某事故渔船P的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.
(1)求收到求救讯息时事故渔船P与救助船B之间的距离(结果保留根号);
(2)求救助船A、B分别以40海里/小时,30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.
模型三:母子型
13.(2022•济南)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28mB.34mC.37mD.46m
14.(2022•平定县模拟)2022年2月20日,举世瞩目的北京冬奥会圆满落下帷幕.北京冬奥会为绿色办奥、科技办奥贡献了中国样本和中国智慧,让奥运精神点亮更多人的冰雪梦想,并以冰雪运动和奥林匹克精神为纽带,凝聚更团结的力量.图1,图2分别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED与斜坡AB垂直,大腿EF与斜坡AB平行,G为头部,假设G,E,D三点共线,若大腿弯曲处与滑雪板后端的距离EM长为0.9m,该运动员大腿EF长为0.4m,且其上半身GF长为0.8m,∠EMD=35°.
(1)求此刻滑雪运动员的身体与大腿所成的夹角∠GFE的度数;
(2)求此刻运动员头部G到斜坡AB的高度.(结果精确到0.1m,参考数据:sin35°≈0.57,cs35°≈0.82,tan35°≈0.70,)
15.(2022•宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:≈1.7,≈1.4)
模型三:母子型
16.(2022•澄迈县模拟)如图,某教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面夹角是45°时,教学楼顶部A在地面上的影子F与墙角C的距离为18m(B、F、C在同一直线上).求教学楼AB的高;(结果保留整数)(参考数据:sin22°≈0.37,cs22°≈0.93,tan22°≈0.40)
17.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.
(结果精确到0.1m,参考数据:≈1.732)
模型四:拥抱型
18.(凉山州)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)
锐角
30°
45°
1
60°
已知条件
解法步骤
Rt△ABC
两
边
两直角边(a,b)
由求∠A,
∠B=90°-∠A,
斜边,一直角边(如c,a)
由求∠A,
∠B=90°-∠A,
一
边
一
角
一直角边
和一锐角
锐角、邻边
(如∠A,b)
∠B=90°-∠A,
,
锐角、对边
(如∠A,a)
∠B=90°-∠A,
,
斜边、锐角(如c,∠A)
∠B=90°-∠A,
,
相关试卷
这是一份中考数学一轮复习知识梳理+考点精讲专题31 统计和概率(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题31统计和概率原卷版doc、中考数学一轮复习知识梳理+考点精讲专题31统计和概率解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题29 视图与投影(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题29视图与投影原卷版doc、中考数学一轮复习知识梳理+考点精讲专题29视图与投影解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题28 尺规作图(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题28尺规作图原卷版doc、中考数学一轮复习知识梳理+考点精讲专题28尺规作图解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。