人教A版高中数学(必修第二册)第一次月考测试卷(二)(平面向量 复数)(2份,原卷版+解析版)
展开
这是一份人教A版高中数学(必修第二册)第一次月考测试卷(二)(平面向量 复数)(2份,原卷版+解析版),文件包含人教A版高中数学必修第二册第一次月考测试卷二平面向量复数原卷版doc、人教A版高中数学必修第二册第一次月考测试卷二平面向量复数解析版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
2.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、试室号、座位号填写在答题卷上。
3. 答题必须使用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷上各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
4.考生必须保持答题卷整洁,考试结束后,将答题卷交回,试卷自己保存。
第I卷(选择题 共60分)
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)
1.(2023·广东揭阳·统考)已知为虚数单位,若复数 ()为实数,则( )
A.B.C.1D.2
2.(2022秋·广东深圳·高一校考阶段练习)已知向量,,则( )
A.52B.C.D.3
3.(2022春·广东东莞·高一统考期末)已知平面向量与为单位向量,它们的夹角为,则( )
A.B.C.D.
4.(2022春·广东深圳·高一福田外国语高中校考期中)如图,在中,点是线段上靠近的三等分点,点是线段的中点,则( )
A.B.
C.D.
5.(2022春·广东广州·高一校联考期中)已知在平行四边形ABCD中,,,对角线AC与BD相交于点M,( )
A.B.C.D.
6.(2023秋·广东佛山·高一阶段练习)记的内角A,B,C的对边分别为a,b,c,且,则( ).
A.B.C.D.
7.(2022春·广东潮州·高一饶平县第二中学校考阶段练习)已知向量,,,则的值是( )
A.B.C.D.
8.(2023春·广东汕头·高一统考期末)若,,,点C在AB上,且,设,则的值为( )
A.B.C.D.
二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分)
9.(2022春·广东揭阳·高一普宁市华侨中学校考阶段练习)已知向量,,则下列说法正确的是( )
A.若,则B.若,则
C.的最小值为6D.若与的夹角为锐角,则
10.(2023·广东广州·统考二模)设复数,(i为虚数单位),则下列结论正确的为( )
A.是纯虚数B.对应的点位于第二象限
C.D.
11.(2022春·广东佛山·高一佛山一中校考期中)已知角,,是的三个内角,下列结论一定成立的有( )
A.若,则是等腰三角形
B.若,则
C.若是锐角三角形,则
D.若,,,则的面积为或
12.(2022春·广东广州·高一广州市海珠中学校考期中)“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”(Mercedesbenz)的lg很相似,故形象地称其为“奔驰定理”.奔驰定理:已知是内的一点,,,的面积分别为,,,则.若是锐角内的一点,,,是的三个内角,且点满足.则( )
A.为的外心
B.
C.
D.
第Ⅱ卷(非选择题 共90分)
三、填空题(本题共4小题,每小题5分,共20分)
13.(2023春·广东广州·高一广州市育才中学校考阶段练习)复数(其中是虚数单位)的虚部是___________.
14.(2022秋·广东汕头·高一金山中学校考期末)设向量,且,则向量在向量方向上的投影是_______.
15.(2022春·广东潮州·高一饶平县第二中学校考阶段练习)已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.
16.(2022秋·广东梅州·高一兴宁市第一中学校考阶段练习)中,角A,B,C对边分别为a,b,c,点P是所在平面内的动点,满足().射线BP与边AC交于点D.若,,则面积的最小值为______.
四、解答题(本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(2023春·广东广州·高一统考阶段练习)在锐角△ABC中,角A、B、C所对的边分别为a、b、c,已知.
(1)求角A的大小;
(2)若,,求△ABC的面积.
18.(2022秋·广东阳江·高一阳江市第一中学校考期中)已知向量满足,且.
(1)求;
(2)记向量与向量的夹角为,求.
19.(2023秋·广东广州·高一广东番禺中学校考期末)在中,设角所对的边长分别为,且.
(1)求角;
(2)若的面积,,求的值.
20.(2022春·广东佛山·高一佛山一中校考期中)如图,在梯形,,,,,.
(1)若,求的值;
(2)若,求与的夹角的正切值.
21.(2023春·广东深圳·高一深圳外国语学校校考期末)①,②,③三个条件中任选一个,补充在下面的问题中,并进行解答.
已知的三边,,所对的角分别为,,.若,______.
(1)求;
(2)求的面积.注:如果选择多个条件分别解答,按第一个解答计分.
22.(2023秋·广东梅州·高一蕉岭县蕉岭中学校考开学考试)如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中,,.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道,且两边是两个关于走道对称的三角形(和).现考虑绿地最大化原则,要求点与点,均不重合,落在边上且不与端点,重合.
(1)设,若,求此时公共绿地的面积;
(2)为方便小区居民的行走,设计时要求,的长度最短,求此时绿地公共走道的长度.
相关试卷
这是一份人教A版高中数学(必修第二册)第一次月考测试卷(一)(三角函数 平面向量)(2份,原卷版+解析版),文件包含人教A版高中数学必修第二册第一次月考测试卷一三角函数平面向量原卷版doc、人教A版高中数学必修第二册第一次月考测试卷一三角函数平面向量解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份人教A版高中数学(必修第二册)期中考测试卷(三角函数 平面向量 复数)(2份,原卷版+解析版),文件包含人教A版高中数学必修第二册期中考测试卷三角函数平面向量复数原卷版doc、人教A版高中数学必修第二册期中考测试卷三角函数平面向量复数解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册8.3 简单几何体的表面积与体积同步训练题,文件包含人教A版高中数学必修第二册第一次月考测试卷三平面向量复数简单几何体的表面积与体积原卷版doc、人教A版高中数学必修第二册第一次月考测试卷三平面向量复数简单几何体的表面积与体积解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。