人教A版 (2019)选择性必修 第二册第四章 数列4.3 等比数列教案配套ppt课件
展开
这是一份人教A版 (2019)选择性必修 第二册第四章 数列4.3 等比数列教案配套ppt课件,共37页。PPT课件主要包含了思维导图,知识梳理,真题模拟题,典型例题,S2n-Sn,S3n-S2n等内容,欢迎下载使用。
1.等比数列前n项和公式等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn=________ = .
2.等比数列前n项和的常用性质(1)若等比数列{an}的公比q≠-1, 前n项和为Sn,则Sn, ,_______仍成等比数列,其公比为qn.
(4)Sm+n=Sn+qnSm=Sm+qmSn.
题型一:等比数列前n项和的有关计算
题型二:等比数列前n项和在几何中的应用
【典例2-2】(2024·贵州·模拟预测)拓扑结构图在计算机通信、计算机网络结构设计和网络维护等方面有着重要的作用.某树形拓扑结构图如图所示,圆圈代表节点,每一个节点都有两个子节点,则到第10层一共有 个节点.(填写具体数字)
题型三:等比数列前n项和的性质
题型四:递推公式在实际问题中的应用
题型五:利用错位相减法求数列的前n项和
题型六:等比数列前n项和公式的实际应用
【变式6-1】(2024·广东茂名·一模)有一座六层高的商场,若每层所开灯的数量都是下面一层的两倍,一共开了1890盏,则底层所开灯的数量为 盏.
题型八:等比数列片段和的性质
题型九:等比数列的奇数项与偶数项和
相关课件
这是一份选择性必修 第二册第四章 数列4.2 等差数列集体备课ppt课件,共37页。PPT课件主要包含了CONTENTS,思维导图,知识梳理,真题模拟题,典型例题等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第二册4.3 等比数列教案配套ppt课件,共32页。PPT课件主要包含了方法小结,教材例题讲解,知三求二,实际应用等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第二册4.3 等比数列课文ppt课件,共22页。PPT课件主要包含了na1,探究新知,典例解析,归纳总结等内容,欢迎下载使用。