搜索
    上传资料 赚现金
    英语朗读宝

    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(原卷版).doc
    • 解析
      【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(解析版).doc
    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(原卷版)第1页
    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(原卷版)第2页
    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(解析版)第1页
    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(解析版)第2页
    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(解析版)第3页
    还剩2页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(原卷版+解析版)

    展开

    这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题18 平行四边形(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题18平行四边形原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题18平行四边形解析版doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
    一、选择题
    1. (2024四川乐山)下列条件中,不能判定四边形是平行四边形的是( )
    A. B.
    C. D.
    【答案】D
    【解析】根据平行四边形的判定定理分别进行分析即可.
    A、∵,
    ∴四边形是平行四边形,故此选项不合题意;
    B、∵,
    ∴四边形是平行四边形,故此选项不合题意;
    C、∵,
    ∴四边形是平行四边形,故此选项不合题意;
    D、∵,不能得出四边形是平行四边形,故此选项符合题意;
    故选:D.
    【点睛】此题主要考查平行四边形的判定,解题的关键是熟知平行四边形的判定定理.
    2. (2024贵州省)如图,平行四边形ABCD的对角线与相交于点O,则下列结论一定正确的是( )
    A.B. C. D.
    【答案】B
    【解析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.
    ∵是平行四边形,
    ∴,
    故选B.
    3. (2024河南省)如图,在中,对角线,相交于点O,点E为的中点,交于点F.若,则的长为( )
    A. B. 1C. D. 2
    【答案】B
    【解析】本题考查了相似三角形的判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出,证明,利用相似三角形的性质求解即可.
    【详解】∵四边形是平行四边形,
    ∴,
    ∵点E为的中点,
    ∴,
    ∵,
    ∴,
    ∴,即,
    ∴,
    故选:B.
    4. (2024河北省)下面是嘉嘉作业本上的一道习题及解答过程:
    若以上解答过程正确,①,②应分别为( )
    A. ,B. ,
    C. ,D. ,
    【答案】D
    【解析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得,根据三角形外角的性质及角平分线的定义可得,证明,得到,再结合中点的定义得出,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.
    【详解】证明:∵,∴.
    ∵,,,
    ∴①.
    又∵,,
    ∴(②).
    ∴.∴四边形是平行四边形.
    故选:D.
    二、填空题
    1. (2024四川凉山)如图,四边形各边中点分别是,若对角线,则四边形的周长是______.
    【答案】42
    【解析】本题考查的是中点四边形,熟记三角形中位线定理是解题的关键.
    根据三角形中位线定理分别求出、、、,根据四边形的周长公式计算,得到答案.
    【详解】四边形各边中点分别是、、、,
    、、、分别为、、、的中位线,
    ,,,,
    四边形的周长为:,
    故答案为:42.
    2. (2024四川宜宾)如图,在平行四边形中,,E、F分别是边上的动点,且.当的值最小时,则_____________.

    【答案】
    【解析】本题主要考查了平行四边形的性质,三角形全等的判定和性质,相似三角形的判定和性质.延长,截取,连接,,证明,得出,说明当最小时,最小,根据两点之间线段最短,得出当A、E、G三点共线时,最小,即最小,再证明,根据相似三角形的性质,求出结果即可.
    【详解】解:延长,截取,连接,,如图所示:

    ∵四边形为平行四边形,
    ∴,,,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∴当最小时,最小,
    ∵两点之间线段最短,
    ∴当A、E、G三点共线时,最小,即最小,且最小值为的长,

    ∵,
    ∴,
    ∴,即,
    解得.
    故答案为:.
    三、解答题
    1. (2024湖北省)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
    【答案】证明见解析.
    【解析】利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.
    ∵四边形ABCD是平行四边形,
    ∴AB//DC,AB=DC,
    ∴∠BAE=∠DCF,
    在△AEB和△CFD中,

    ∴△AEB≌△CFD(SAS),
    ∴BE=DF.
    【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.
    2. (2024四川泸州)如图,在平行四边形ABCD中,E,F是对角线上的点,且.求证:.
    【答案】证明见解析
    【解析】本题主要考查了平行四边形的性质,全等三角形的性质与判定,先由平行四边形的性质得到,则,再证明,即可证明.
    【详解】证明:∵四边形是平行四边形,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴.
    3. (2024湖南省)如图,在四边形中,,点E在边上, .请从“①;②,”这两组条件中任选一组作为已知条件,填在横线上(填序号),再解决下列问题:
    (1)求证:四边形为平行四边形;
    (2)若,,,求线段的长.
    【答案】(1)①或②,证明见解析; (2)6
    【解析】题目主要考查平行四边形的判定和性质,勾股定理解三角形,理解题意,熟练掌握平行四边形的判定和性质是解题关键.
    (1)选择①或②,利用平行四边形的判定证明即可;
    (2)根据平行四边形的性质得出,再由勾股定理即可求解.
    【小问1详解】
    解:选择①,
    证明:∵,
    ∴,
    ∵,
    ∴四边形为平行四边形;
    选择②,
    证明:∵,,
    ∴,
    ∵,
    ∴四边形为平行四边形;
    【小问2详解】
    解:由(1)得,
    ∵,,
    ∴.
    4. (2024吉林省)如图,在平行四边形ABCD中,点O是的中点,连接并延长,交的延长线于点E,求证:.
    【答案】证明见解析
    【解析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出,再由线段中点的定义得到,据此可证明,进而可证明.
    【详解】证明:∵四边形是平行四边形,
    ∴,
    ∴,
    ∵点O是的中点,
    ∴,
    ∴,
    ∴.
    5. (2024北京市)如图,在四边形中,是的中点,,交于点,,.

    (1)求证:四边形为平行四边形;
    (2)若,,,求的长.
    【答案】(1)见详解 (2)
    【解析】(1)根据三角形的中位线定理得到,而,即可求证;
    (2)解求得,由三角形的中位线定理和平行四边形的性质得到,最后对运用勾股定理即可求解.
    【小问1详解】
    证明:∵是的中点,,
    ∴,
    ∵,
    ∴四边形为平行四边形;
    【小问2详解】
    解:∵,
    ∴,
    在中,,,
    ∴,
    ∵是的中点,
    ∴,
    ∵四边形为平行四边形,
    ∴,
    ∴在中,由勾股定理得.
    【点睛】本题考查了平行四边形的判定与性质,三角形的中位线定理,解直角三角形,勾股定理,熟练掌握知识点是解决本题的关键.
    6. (2024武汉市)如图,在平行四边形ABCD中,点,分别在边,上,.
    (1)求证:;
    (2)连接.请添加一个与线段相关的条件,使四边形是平行四边形.(不需要说明理由)
    【答案】(1)见解析 (2)添加(答案不唯一)
    【解析】本题考查了平行四边形的性质与判定,全等三角形的判定;
    (1)根据平行四边形的性质得出,,结合已知条件可得,即可证明;
    (2)添加,依据一组对边平行且相等的四边形是平行四边形,即可求解.
    【小问1详解】
    证明:∵四边形是平行四边形,
    ∴,,,
    ∵,
    ∴即,
    在与中,

    ∴;
    【小问2详解】
    添加(答案不唯一)
    如图所示,连接.
    ∵四边形是平行四边形,
    ∴,即,
    当时,四边形是平行四边形.
    已知:如图,中,,平分的外角,点是的中点,连接并延长交于点,连接.
    求证:四边形是平行四边形.
    证明:∵,∴.
    ∵,,,
    ∴①______.
    又∵,,
    ∴(②______).
    ∴.∴四边形是平行四边形.

    相关试卷

    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题28 概率(原卷版+解析版):

    这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题28 概率(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题28概率原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题28概率解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题27 统计(原卷版+解析版):

    这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题27 统计(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题27统计原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题27统计解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题26 投影与视图(原卷版+解析版):

    这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题26 投影与视图(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题26投影与视图原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题26投影与视图解析版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map