所属成套资源:【备战2025年中考】一轮复习 初中数学 真题分项汇编
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题28 概率(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练29 数式图及坐标等规律探索问题(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练31 与物理化学等学科渗透的数学问题(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练32 最值问题(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练33 新定义型(含高中知识衔接)问题(原卷版+解析版) 试卷 0 次下载
【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练30 尺规作图类问题(原卷版+解析版)
展开
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练30 尺规作图类问题(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题30尺规作图类问题原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题30尺规作图类问题解析版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
一、选择题
1. (2024山东烟台)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线为的平分线的有( )
A. 1个B. 2个C. 3个D. 4个
2. (2024四川眉山)如图,在中,,,分别以点,点为圆心,大于的长为半径作弧,两弧交于点,,过点,作直线交于点,连接,则的周长为( )
A. 7B. 8C. 10D. 12
3. (2024天津市)如图,中,,以点为圆心,适当长为半径画弧,交于点,交于点;再分别以点为圆心,大于的长为半径画弧,两弧(所在圆的半径相等)在的内部相交于点;画射线,与相交于点,则的大小为( )
A. B. C. D.
4. (2024河北省)观察图中尺规作图的痕迹,可得线段一定是的( )
A. 角平分线B. 高线C. 中位线D. 中线
5. (2024武汉市)小美同学按如下步骤作四边形:①画;②以点为圆心,个单位长为半径画弧,分别交,于点,;③分别以点,为圆心,个单位长为半径画弧,两弧交于点;④连接,,.若,则的大小是( )
A. B. C. D.
6. (2024四川南充)如图,已知线段,按以下步骤作图:①过点B作,使,连接;②以点C为圆心,以长为半径画弧,交于点D;③以点A为圆心,以长为半径画弧,交于点E.若,则m的值为( )
A. B. C. D.
7. (2024北京市)下面是“作一个角使其等于”的尺规作图方法.
上述方法通过判定得到,其中判定的依据是( )
A. 三边分别相等的两个三角形全等
B. 两边及其夹角分别相等的两个三角形全等
C. 两角及其夹边分别相等的两个三角形全等
D. 两角分别相等且其中一组等角的对边相等的两个三角形全等
8. (2024深圳)在如图的三个图形中,根据尺规作图的痕迹,能判断射线平分的是( )
A. ①②B. ①③C. ②③D. 只有①
9. (2024四川成都市)如图,在中,按以下步骤作图:①以点为圆心,以适当长为半径作弧,分别交,于点,;②分别以,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交于点,交延长线于点.若,,下列结论错误的是( )
A. B.
C. D.
10.(2024湖北省) 为半圆的直径,点为半圆上一点,且.①以点为圆心,适当长为半径作弧,交于;②分别以为圆心,大于为半径作弧,两弧交于点;③作射线,则( )
A. B. C. D.
二、填空题
1. (2024湖南省)如图,在锐角三角形中,是边上的高,在,上分别截取线段,,使;分别以点E,F为圆心,大于的长为半径画弧,在内,两弧交于点P,作射线,交于点M,过点M作于点N.若,,则________.
2. (2024贵州省)如图,在中,以点A为圆心,线段的长为半径画弧,交于点D,连接.若,则的长为______.
3. (2024黑龙江齐齐哈尔)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于的长为半径画弧,两弧在第一象限交于点H,画射线,若,则______.
4. (2024山东枣庄)如图,已知,以点为圆心,以适当长为半径作弧,分别与、相交于点,;分别以,为圆心,以大于的长为半径作弧,两弧在内部相交于点,作射线.分别以,为圆心,以大于的长为半径作弧,两弧相交于点,,作直线分别与,相交于点,.若,,则到的距离为________.
5. (2024天津市)如图,在每个小正方形的边长为1的网格中,点均在格点上.
(1)线段的长为______;
(2)点在水平网格线上,过点作圆,经过圆与水平网格线的交点作切线,分别与的延长线相交于点中,点在边上,点在边上,点在边上.请用无刻度的直尺,在如图所示的网格中,画出点,使的周长最短,并简要说明点的位置是如何找到的(不要求证明)______.
三、解答题
1. (2024福建省)如图,已知直线.
(1)在所在的平面内求作直线,使得,且与间的距离恰好等于与间的距离;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,若与间的距离为2,点分别在上,且为等腰直角三角形,求的面积.
2. (2024广西)如图,在中,,.
(1)尺规作图:作线段的垂直平分线l,分别交,于点D,E:(要求:保留作图痕迹,不写作法,标明字母)
(2)在(1)所作的图中,连接,若,求的长.
3. (2024陕西省)如图,已知直线l和l外一点A,请用尺规作图法,求作一个等腰直角,使得顶点B和顶点C都在直线l上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法)
4. (2024内蒙古赤峰)如图,在中,D是中点.
(1)求作:的垂直平分线l(要求:尺规作图,不写作法,保留作图痕迹);
(2)若l交于点E,连接并延长至点F,使,连接.补全图形,并证明四边形是平行四边形.
5. (2024黑龙江绥化)已知:.
(1)尺规作图:画出的重心.(保留作图痕迹,不要求写作法和证明)
(2)在(1)的条件下,连接,.已知的面积等于,则的面积是______.
6. (2024甘肃临夏)根据背景素材,探索解决问题.
7. (2024甘肃威武)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知和圆上一点M.作法如下:
①以点M为圆心,长为半径,作弧交于A,B两点;
②延长交于点C;
即点A,B,C将的圆周三等分.
(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将的圆周三等分(保留作图痕迹,不写作法);
(2)根据(1)画出的图形,连接,,,若的半径为,则的周长为______.
8. (2024河南省)如图,在中,是斜边上的中线,交的延长线于点E.
(1)请用无刻度的直尺和圆规作,使,且射线交于点F(保留作图痕迹,不写作法).
(2)证明(1)中得到的四边形是菱形
9. (2024武汉市)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.
(1)在图(1)中,画射线交于点D,使平分的面积;
(2)在(1)的基础上,在射线上画点E,使;
(3)在图(2)中,先画点F,使点A绕点F顺时针旋转到点C,再画射线交于点G;
(4)在(3)基础上,将线段绕点G旋转,画对应线段(点A与点M对应,点B与点N对应).
10. (2024吉林省)小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:
【探究论证】
(1)如图①,在中,,,垂足为点D.若,,则______.
(2)如图②,在菱形中,,,则______.
(3)如图③,在四边形中,,垂足为点O.若,,则______;若,,猜想与a,b的关系,并证明你的猜想.
【理解运用】
(4)如图④,在中,,,,点P为边上一点.
小明利用直尺和圆规分四步作图:
(ⅰ)以点K圆心,适当长为半径画弧,分别交边,于点R,I;
(ⅱ)以点P为圆心,长为半径画弧,交线段于点;
(ⅲ)以点为圆心,长为半径画弧,交前一条弧于点,点,K在同侧;
(ⅳ)过点P画射线,在射线上截取,连接,,.
请你直接写出的值.
11. (2024江苏扬州)如图,已知及边上一点.
(1)用无刻度直尺和圆规在射线上求作点,使得;(保留作图痕迹,不写作法)
(2)在(1)的条件下,以点为圆心,以为半径的圆交射线于点,用无刻度直尺和圆规在射线上求作点,使点到点的距离与点到射线的距离相等;(保留作图痕迹,不写作法)
(3)在(1)、(2)的条件下,若,,求的长.
12. (2024江西省)如图,为菱形的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)
(1)如图,过点作的垂线;
(2)如图,点为线段的中点,过点作的平行线.
13. (2024山东威海)感悟
如图1,在中,点,在边上,,.求证:.
应用
(1)如图2,用直尺和圆规在直线上取点,点(点在点的左侧),使得,且(不写作法,保留作图痕迹);
(2)如图3,用直尺和圆规在直线上取一点,在直线上取一点,使得,且(不写作法,保留作图痕迹).
14. (2024四川达州)如图,线段、相交于点.且,于点.
(1)尺规作图:过点作的垂线,垂足为点、连接、;(不写作法,保留作图痕迹,并标明相应的字母)
(2)若,请判断四边形的形状,并说明理由.(若前问未完成,可画草图完成此问)
(1)如图,以点为圆心,任意长为半径画弧,分别交,于点,;
(2)作射线,以点为圆心,长为半径画弧,交于点;以点为圆心,长为半径画弧,两弧交于点;
(3)过点作射线,则.
平面直角坐标系中画一个边长为2的正六边形
背景素材
六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.
已知条件
点与坐标原点重合,点在轴正半轴上且坐标为
操作步骤
①分别以点,为圆心,长为半径作弧,两弧交于点;
②以点为圆心,长为半径作圆;
③以的长为半径,在上顺次截取;
④顺次连接,,,,,得到正六边形.
问题解决
任务一
根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)
任务二
将正六边形绕点顺时针旋转,直接写出此时点所在位置的坐标:______.
相关试卷
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练35 综合与实践探究类问题(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题35综合与实践探究类问题原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题35综合与实践探究类问题解析版doc等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练34 重要的数学思想方法问题(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题34重要的数学思想方法问题原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题34重要的数学思想方法问题解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练33 新定义型(含高中知识衔接)问题(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题33新定义型含高中知识衔接问题原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题33新定义型含高中知识衔接问题解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。