2024年甘肃省兰州市中考数学模拟试卷(解析版)
展开
这是一份2024年甘肃省兰州市中考数学模拟试卷(解析版),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1. 计算的结果是( )
A. ±2B. 2C. D.
【答案】B
【解析】
【分析】由于表示4的算术平方根,根据算术平方根的定义即可求出结果.
【详解】4的算术平方根是2,即=2,
故选B.
【点睛】本题考查算术平方根的定义,比较基础,正确把握算术平方根的定义是解题的关键.
2. 如图,直线,直线c与直线a,b分别相交于点A,B,,垂足为C.若,则( )
A. 52°B. 45°C. 38°D. 26°
【答案】C
【解析】
【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.
【详解】解:∵ab,
∴∠1=∠ABC=52°,
∵AC⊥b,
∴∠ACB=90°,
∴∠2=90°-∠ABC=38°,
故选:C.
【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.
3. 下列分别是2024年北京冬奥会、1998年长野冬奥会、1992年阿尔贝维尔冬奥运会、1984年萨拉热窝冬奥会会徽上的图案,其中是轴对称图形的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形为轴对称图形.
详解】解:A.不能沿一条直线折叠完全重合;
B.不能沿一条直线折叠完全重合;
C.不能沿一条直线折叠完全重合;
D.能够沿一条直线折叠完全重合;
故选:D.
【点睛】本题考查了轴对称图形的概念,关键在于熟练掌握轴对称图形的概念,并对选项作出正确判断.
4. 计算:( )
A. B. C. D.
【答案】A
【解析】
【分析】根据完全平方公式展开即可.
【详解】解:原式=
故选:A.
【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.
5. 如图,内接于,CD是的直径,,则( )
A. 70°B. 60°C. 50°D. 40°
【答案】C
【解析】
【分析】由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B的度数.
【详解】解:∵CD是⊙O的直径,
∴∠CAD=90°,
∴∠ACD+∠D=90°,
∵∠ACD=40°,
∴∠ADC=∠B=50°.
故选:C.
【点睛】本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.
6. 若一次函数的图象经过点,,则与的大小关系是( )
A. B. C. D.
【答案】A
【解析】
【分析】先根据一次函数的解析式判断出函数的增减性,再根据-3<4即可得出结论.
【详解】解:∵一次函数y=2x+1中,k=2>0,
∴y随着x的增大而增大.
∵点(-3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,-3<4,
∴y1<y2.
故选:A.
【点睛】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象的增减性是解答此题的关键.
7. 关于x的一元二次方程有两个相等的实数根,则( )
A. -2B. -1C. 0D. 1
【答案】B
【解析】
【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,据此可列出关于k的等量关系式,即可求得k的值.
【详解】∵原方程有两个相等的实数根,
∴△=b2−4ac=4−4×(−k)=0,且k≠0;
解得.
故选:B.
【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
8. 已知,,若,则( )
A. 4B. 6C. 8D. 16
【答案】A
【解析】
【分析】根据相似三角形的性质得到,代入求解即可.
【详解】解:∵,
∴,即,
解得.
故选:A.
【点睛】此题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形性质.相似三角形性质:相似三角形对应边成比例,对应角相等.相似三角形的相似比等于周长比,相似三角形的相似比等于对应高,对应角平分线,对应中线的比,相似三角形的面积比等于相似比的平方.
9. 无色酚酞溶液是一中常见常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】根据概率公式求解即可.
【详解】解:∵酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色,
∵总共有5种溶液,其中碱性溶液有2种,
∴将酚酞试剂滴入任意一瓶液体后呈现红色概率是:.
故选:B.
【点睛】此题考查了概率的知识,解题的关键是熟练掌握概率的求解方法.
10. 如图,菱形ABCD对角线AC与BD相交于点O,E为AD的中点,连接OE,,,则( )
A. 4B. C. 2D.
【答案】C
【解析】
【分析】根据菱形的性质得出,,再由直角三角形斜边上的中线等于斜边一半得出.利用菱形性质、直角三角形边长公式求出,进而求出.
【详解】是菱形,E为AD的中点,
,.
是直角三角形,.
,,
,.
,即,
,.
故选:C.
【点睛】本题主要考查菱形、直角三角形的性质的理解与应用能力.解题关键是得出并求得.求解本题时应恰当理解并运用菱形对角线互相垂直且平分、对角相等,直角三角形斜边上的中线等于斜边一半的性质.
11. 已知二次函数,当函数值y随x值的增大而增大时,x的取值范围是( )
A. B. C. D.
【答案】B
【解析】
【分析】先将函数表达式写成顶点式,根据开口方向和对称轴即可判断.
【详解】解:∵
∵开口向上,对称轴为x=1,
∴x>1时,函数值y随x的增大而增大.
故选:B.
【点睛】本题考查的是二次函数的图像与性质,比较简单,需要熟练掌握二次函数的图像与性质.
12. 如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】根据S阴影=S扇形AOD-S扇形BOC求解即可.
【详解】解:S阴影=S扇形AOD-S扇形BOC
=
=
=
=2.25π(m2)
故选:D.
【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.
二、填空题
13. 因式分解:___________.
【答案】
【解析】
【分析】利用平方差公式分解因式即可得.
【详解】解:原式,
,
故答案为:.
【点睛】本题考查了利用平方差公式分解因式,熟练掌握因式分解的方法是解题关键.
14. 如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是______.
【答案】
【解析】
【分析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标;
【详解】解:如图,
根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,
∴黄河母亲像的坐标是 .
故答案为:.
【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征是解题的关键.
15. 如图,在矩形纸片ABCD中,点E在BC边上,将沿DE翻折得到,点F落在AE上.若,,则______cm.
【答案】
【解析】
【分析】由将△CDE沿DE翻折得到△FDE,点F落在AE上,可得EF=CE=3cm,CD=DF,∠DEC=∠DEF,由矩形的性质得∠DFE=∠C=90°=∠DFA,从而得AF=6cm,AD=AE=9cm,进而由勾股定理既可以求解。
【详解】解:∵将△CDE沿DE翻折得到△FDE,点F落在AE上,,四边形ABCD是矩形,
∴EF=CE=3cm,CD=DF,∠DEC=∠DEF,∠DFE=∠C=90°=∠DFA,
∵AF=2EF,
∴AF=6cm,
∴AE=AF+EF=6+3=9(cm),
∵四边形ABCD是矩形,
∴AB=CD=DF,,
∴∠ADE=∠DEC=∠DEF,
∴AD=AE=9cm,
∵在Rt△ADF中,AF2+DF2=AD2
∴62+DF2=92,
∴DF= (cm),
AB=DF= (cm),
故答案为∶.
【点睛】本题考查矩形的性质、勾股定理及轴对称,熟练掌握轴对称的性质是解题的关键.
16. 2024年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:
估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)
【答案】0.9
【解析】
【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】∵幼树移植数20000时,幼树移植成活的频率是0.902,
∴估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,
故答案为:0.9.
【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.
三、解答题
17. 解不等式:.
【答案】x
相关试卷
这是一份2024年甘肃省兰州市中考数学模拟试卷(解析版),共31页。
这是一份2024年甘肃省兰州市中考数学模拟试卷(原卷版),共11页。
这是一份2024年甘肃省兰州市中考数学模拟试题(解析版),共28页。