所属成套资源:2025高考数学【真题精编】基础精选学生及教师版
2025高考数学【真题精编】基础精选——概率与统计
展开
这是一份2025高考数学【真题精编】基础精选——概率与统计,文件包含13概率与统计70题教师版docx、13概率与统计70题学生版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
一、单选题
1.(2024·全国)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( )
A.B.C.D.
【答案】B
【分析】解法一:画出树状图,结合古典概型概率公式即可求解.
解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.
【解析】解法一:画出树状图,如图,
由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,
其中丙不在排头,且甲或乙在排尾的排法共有8种,
故所求概率.
解法二:当甲排在排尾,乙排第一位,丙有种排法,丁就种,共种;
当甲排在排尾,乙排第二位或第三位,丙有种排法,丁就种,共种;
于是甲排在排尾共种方法,同理乙排在排尾共种方法,于是共种排法符合题意;
基本事件总数显然是,
根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为.
故选:B
2.(2022·全国)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A.B.C.D.
【答案】D
【分析】由古典概型概率公式结合组合、列举法即可得解.
【解析】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
若两数不互质,不同的取法有:,共7种,
故所求概率.
故选:D.
3.(2021·全国)将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A.0.3B.0.5C.0.6D.0.8
【答案】C
【分析】利用古典概型的概率公式可求概率.
【解析】解:将3个1和2个0随机排成一行,可以是:
,
共10种排法,
其中2个0不相邻的排列方法为:
,
共6种方法,
故2个0不相邻的概率为,
故选:C.
4.(2021·全国)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A.B.C.D.
【答案】C
【解析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,
若2个0相邻,则有种排法,若2个0不相邻,则有种排法,
所以2个0不相邻的概率为.
故选:C.
5.(2023·全国)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )
A.B.C.D.
【答案】A
【分析】对6个主题编号,利用列举列出甲、乙抽取的所有结果,并求出抽到不同主题的结果,再利用古典概率求解作答.
【解析】用1,2,3,4,5,6表示6个主题,甲、乙二人每人抽取1个主题的所有结果如下表:
共有36个不同结果,它们等可能,
其中甲乙抽到相同结果有,共6个,
因此甲、乙两位参赛同学抽到不同主题的结果有30个,概率.
故选:A
6.(2023·全国)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )
A.B.C.D.
【答案】D
【分析】利用古典概率的概率公式,结合组合的知识即可得解.
【解析】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,
其中这2名学生来自不同年级的基本事件有,
所以这2名学生来自不同年级的概率为.
故选:D.
7.(2022·全国)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )
A.B.C.D.
【答案】C
【分析】方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.
【解析】[方法一]:【最优解】无序
从6张卡片中无放回抽取2张,共有15种情况,其中数字之积为4的倍数的有6种情况,故概率为.
[方法二]:有序
从6张卡片中无放回抽取2张,共有,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,
其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为.
故选:C.
【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解;
方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;
8.(2022·全国)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大
【答案】D
【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率;该棋手在第二盘与乙比赛且连胜两盘的概率;该棋手在第二盘与丙比赛且连胜两盘的概率.并对三者进行比较即可解决
【解析】该棋手连胜两盘,则第二盘为必胜盘,
记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为,
则此时连胜两盘的概率为
则
;
记该棋手在第二盘与乙比赛,且连胜两盘的概率为,
则
记该棋手在第二盘与丙比赛,且连胜两盘的概率为
则
则
即,,
则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;
与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.
故选:D
9.(2024·全国)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表
根据表中数据,下列结论中正确的是( )
A.100块稻田亩产量的中位数小于1050kg
B.100块稻田中亩产量低于1100kg的稻田所占比例超过80%
C.100块稻田亩产量的极差介于200kg至300kg之间
D.100块稻田亩产量的平均值介于900kg至1000kg之间
【答案】C
【分析】计算出前三段频数即可判断A;计算出低于1100kg的频数,再计算比例即可判断B;根据极差计算方法即可判断C;根据平均值计算公式即可判断D.
【解析】对于 A, 根据频数分布表可知, ,
所以亩产量的中位数不小于 , 故 A 错误;
对于B,亩产量不低于的频数为,
所以低于的稻田占比为,故B错误;
对于C,稻田亩产量的极差最大为,最小为,故C正确;
对于D,由频数分布表可得,平均值为,故D错误.
故选;C.
10.(2015·山东)甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同学恰好选取同一处景点的概率是( )
A.B.C.D.
【答案】D
【分析】应用古典概型的概率求法,求甲、乙两位同窗恰好选取同一处景点的概率即可.
【解析】甲、乙两位同窗选取景点的种数为,其中甲、乙两位同窗恰好选取同一处景点的种数为2,
∴甲、乙两位同窗恰好选取同一处景点的概率为.
故选:D
11.(2023·天津)鸢是鹰科的一种鸟,《诗经·大雅·旱麓》曰:“鸢飞戾天,鱼跃余渊”. 鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm),绘制散点图如图所示,计算得样本相关系数为,利用最小二乘法求得相应的经验回归方程为,根据以上信息,如下判断正确的为( )
A.花瓣长度和花萼长度不存在相关关系
B.花瓣长度和花萼长度负相关
C.花萼长度为7cm的该品种鸢尾花的花瓣长度的平均值为
D.若从样本中抽取一部分,则这部分的相关系数一定是
【答案】C
【分析】根据散点图的特点及经验回归方程可判断ABC选项,根据相关系数的定义可以判断D选项.
【解析】根据散点的集中程度可知,花瓣长度和花萼长度有相关性,A选项错误
散点的分布是从左下到右上,从而花瓣长度和花萼长度呈现正相关性,B选项错误,
把代入可得,C选项正确;
由于是全部数据的相关系数,取出来一部分数据,相关性可能变强,可能变弱,即取出的数据的相关系数不一定是,D选项错误
故选:C
12.(2020·山东)现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是( )
A.B.C.D.
【答案】B
【分析】利用古典概型概率公式,结合分步计数原理,计算结果.
【解析】5位老师,每人随机进入两间教室中的任意一间听课,共有种方法,
其中恰好全都进入同一间教室,共有2种方法,所以.
故选:B
13.(2020·全国)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )
A.B.
C.D.
【答案】A
【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.
【解析】如图,从5个点中任取3个有
共种不同取法,
3点共线只有与共2种情况,
由古典概型的概率计算公式知,
取到3点共线的概率为.
故选:A
【小结】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.
14.(2007·重庆)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( ).
A.B.C.D.
【答案】C
【分析】由题意知,本题是一个古典概型,满足条件的事件包含的结果比较多,可以从它的对立事件来考虑,取出三张门票的价格均不相同,共有种取法,试验发生的所有事件总的取法有种,用对立事件概率得到结果.
【解析】由题意知本题是一个古典概型,满足条件的事件包含的结果比较多,可以从它的对立事件来考虑,取出的三张门票的价格均不相同,共有种取法,试验发生的所有事件总的取法有种,三张门票的价格均不相同的概率是,至少有2张价格相同的概率为
故答案选:C
【点睛】本题主要考查古典概型和对立事件,正难则反是解题时要时刻注意的,属于基础题.
15.(2019·全国)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
A.B.C.D.
【答案】D
【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.
【解析】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D.
【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.
16.(2019·全国)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为
A.B.
C.D.
【答案】B
【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.
【解析】设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,共10种.其中恰有2只做过测试的取法有共6种,
所以恰有2只做过测试的概率为,选B.
【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.
17.(2007·广东)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )
A.B.C.D.
【答案】C
【分析】直接利用古典概型概率公式求解即可.
【解析】从五个球中任取两个,
共有种取法,
其中1,2;1,5;2,4,三种取法数字之和为3或6,
利用古典概型可得取出的小球标注的数字之和为3或6的概率是,
故选C.
【点睛】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.
18.(2008·江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为
A.B.C.D.
【答案】C
【解析】试题分析:由于一天有1440分钟,所以有1440种不同的结果,其中符合要求的有19:49,19:58,18:59,09:59共四种,所以所求概率为
考点:本小题主要考查古典概型求概率.
点评:古典概型求概率,要保证每个基本事件都是等可能的.
19.(2013·全国)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是
A.B.C.D.
【答案】B
【解析】解法一:由排列组合知识可知,所求概率;
解法二:任取两个数可能出现的情况为(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4);符合条件的情况为(1,3)、(2,4),故.
【考点定位】本题考查古典概型的概率运算,考查学生的基本运算能力.
20.(2014·全国)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为
A.B.C.D.
【答案】D
【解析】试题分析:由已知,4位同学各自在周六、周日两天中任选一天参加公益活动共有种不同的结果,而周六、周日都有同学参加公益活动有两类不同的情况:(1)一天一人,另一天三人,有种不同的结果;(2)周六、日各2人,有种不同的结果,故周六、周日都有同学参加公益活动有种不同的结果,所以周六、周日都有同学参加公益活动的概率为,选D.
【考点定位】1、排列和组合;2、古典概型的概率计算公式.
21.(2010·辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为
A.B.C.D.
【答案】B
【解析】记两个零件中恰好有一个一等品的事件为A,
即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,
则P(A)=P(A1)+P(A2)=×+×=
故选B.
22.(2014·陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为
A.B.C.D.
【答案】C
【解析】试题分析:5点中任选2点的选法有,距离不小于该正方形边长的选法有
考点:古典概型概率
23.(2008·辽宁)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为
A.B.C.D.
【答案】C
【解析】: 取出的2张卡片上的数字之和为奇数的抽取方法是一奇一偶,C C÷C=
24.(2011·全国)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
A.B.C.D.
【答案】A
【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A
25.(2012·安徽)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )
A.B.C.D.
【答案】B
【解析】试题分析:由题意.
故选B.
26.(2011·广东)甲、乙两队进行接球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )
A.B.C.D.
【答案】D
【分析】分析出甲获得冠军的两种情况,分别求出概率相加即可.
【解析】甲获得冠军有两种情况,下一局甲赢得比赛,或下一局甲输,再下一局,甲赢,
故概率为,
故选:D
27.(2015·湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )
A.134石B.169石C.338石D.1365石
【答案】B
【解析】设夹谷石,则,
所以,
所以这批米内夹谷约为石,故选B.
考点:用样本的数据特征估计总体.
28.(2015·广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为
A.B.C.D.1
【答案】B
【解析】试题分析:首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.
解:这是一个古典概型,从15个球中任取2个球的取法有;
∴基本事件总数为105;
设“所取的2个球中恰有1个白球,1个红球”为事件A;
则A包含的基本事件个数为=50;
∴P(A)=.
故选B.
点评:考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.
29.(2013·安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为
A.B.
C.D.
【答案】D
【解析】试题分析:甲乙都未被录用的概率为,所以甲或乙被录用的概率为
考点:古典概型概率
30.(2012·辽宁)在长为12cm的线段AB上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为
A.B.C.D.
【答案】C
【解析】试题分析:设AC=x,则BC=12-x(0<x<12)
矩形的面积S=x(12-x)>20
∴x2-12x+20<0
∴2<x<10
由几何概率的求解公式可得,矩形面积大于20cm2的概率
考点:几何概型
31.(2018·全国)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为
A.0.3B.0.4C.0.6D.0.7
【答案】B
【解析】设事件A为不用现金支付,
则
故选:B.
32.(2018·全国)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为
A.B.C.D.
【答案】D
【分析】分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.
【解析】设2名男同学为,3名女同学为,
从以上5名同学中任选2人总共有共10种可能,
选中的2人都是女同学的情况共有共三种可能
则选中的2人都是女同学的概率为,
故选D.
33.(2018·全国)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是
A.B.C.D.
【答案】C
【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.
详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.
点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.
34.(2017·天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为
A.B.C.D.
【答案】C
【解析】选取两支彩笔的方法有种,含有红色彩笔的选法为种,
由古典概型公式,满足题意的概率值为.
本题选择C选项.
考点:古典概型
名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.
35.(2017·山东)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是
A. B. C. D.
【答案】C
【解析】标有,,,的张卡片中,标奇数的有张,标偶数的有张,所以抽到的2张卡片上的数奇偶性不同的概率是 ,选C.
【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.江苏对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.
36.(2017·全国)从分别写有的张卡片中随机抽取张,放回后再随机抽取张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为
A.B.C.D.
【答案】D
【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,
基本事件总数n=5×5=25,
抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:
(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),
共有m=10个基本事件,
∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=
故答案为D.
37.(2016·全国)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是
A.B.C.D.
【答案】C
【解析】试题分析:开机密码的可能有,,共15种可能,所以小敏输入一次密码能够成功开机的概率是,故选C.
【考点】古典概型
【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式(其中n是基本事件的总数,m是事件A包含的基本事件的个数)得出的结果才是正确的.
38.(2016·全国)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
A.B.C.D.
【答案】C
【解析】试题分析:将4种颜色的花中任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为,选C.
【考点】古典概型
【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.
39.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为
A.B.C.D.
【答案】A
【解析】试题分析:甲不输概率为选A.
【考点】概率
【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法公式.对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.
40.(2015·全国)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为
A.B.C.D.
【答案】C
【解析】试题分析:从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.
考点:古典概型
41.(2015·广东)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )
A.0.4B.0.6C.0.8D.1
【答案】B
【解析】件产品中有件次品,记为,,有件合格品,记为,,,从这件产品中任取件,有种,分别是,,,,,,,,,,恰有一件次品,有种,分别是,,,,,,设事件“恰有一件次品”,则,故选B.
考点:古典概型.
42.(2014·湖北)随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为,点数之和大于5的概率为,点数之和为偶数的概率为,则
A.B.C.D.
【答案】C
【解析】试题分析:依题意,,,,所以.选C.
考点:古典概型公式求概率,容易题.
43.(2007·四川)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是( )
A.150.2克B.149.8克C.149.4克D.147.8克
【答案】B
【分析】根据题意给的数据和样本的期望值的定义直接求解即可.
【解析】由题意知,这车苹果单个重量的平均值为
,
即这车苹果单个重量的期望值为149.8克.
故选:B.
44.(2006·四川)甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层随机抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )
A.30人,30人,30人B.30人,45人,15人
C.20人,30人,40人D.30人,50人,10人
【答案】B
【分析】先求出抽样比,然后根据抽样比即可求出各校应抽取的学生数.
【解析】解:先求抽样比=,
再各层按抽样比分别抽取,甲校抽取3 600×=30(人),乙校抽取5 400×=45(人),丙校抽取1 800×=15(人),
故选:B.
二、多选题
45.(2021·全国)下列统计量中,能度量样本的离散程度的是( )
A.样本的标准差B.样本的中位数
C.样本的极差D.样本的平均数
【答案】AC
【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.
【解析】由标准差的定义可知,标准差考查的是数据的离散程度;
由中位数的定义可知,中位数考查的是数据的集中趋势;
由极差的定义可知,极差考查的是数据的离散程度;
由平均数的定义可知,平均数考查的是数据的集中趋势;
故选:AC.
46.(2023·全国)有一组样本数据,其中是最小值,是最大值,则( )
A.的平均数等于的平均数
B.的中位数等于的中位数
C.的标准差不小于的标准差
D.的极差不大于的极差
【答案】BD
【分析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.
【解析】对于选项A:设的平均数为,的平均数为,
则,
因为没有确定的大小关系,所以无法判断的大小,
例如:,可得;
例如,可得;
例如,可得;故A错误;
对于选项B:不妨设,
可知的中位数等于的中位数均为,故B正确;
对于选项C:因为是最小值,是最大值,
则的波动性不大于的波动性,即的标准差不大于的标准差,
例如:,则平均数,
标准差,
,则平均数,
标准差,
显然,即;故C错误;
对于选项D:不妨设,
则,当且仅当时,等号成立,故D正确;
故选:BD.
47.(2021·全国)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
【答案】CD
【分析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.
【解析】A:且,故平均数不相同,错误;
B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;
C:,故方差相同,正确;
D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;
故选:CD
48.(2024·广东江苏)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
A.B.
C.D.
【答案】BC
【分析】根据正态分布的原则以及正态分布的对称性即可解出.
【解析】依题可知,,所以,
故,C正确,D错误;
因为,所以,
因为,所以,
而,B正确,A错误,
故选:BC.
三、填空题
49.(2007·全国)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .
【答案】
【分析】由简单随机抽样的定义,每个个体被抽到的概率是一样的,结合容量,即可求得概率.
【解析】由题意得,每个个体被抽到的概率为,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为.
故答案为:
50.(2019·全国)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .
【答案】0.98.
【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.
【解析】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为.
【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.
51.(2010·安徽)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .
【答案】5.7%
【分析】首先根据拥有3套或3套以上住房的家庭所占的比例,得出100 000户中居民中拥有3套或3套以上住房的户数,它除以100 000得到的值,为该地拥有3套或3套以上住房的家庭所占比例的合理估计.
【解析】该地拥有3套或3套以上住房的家庭可以估计有:
则该地拥有3套或3套以上住房的家庭所占比例的合理估计为
故答案为
【点睛】本题考查了分层抽样问题的运用,首先要注意分层抽样的方法与特点,进而根据合理估计的计算方法,得到答案.
52.(2014·湖北)甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件.
【答案】1800
【解析】试题分析:由题共有产品4800名,抽取样本为80,则抽取的概率为;,再由50件产品由甲设备生产,则乙设备生产有30件,则乙设备在总体中有;.
考点:抽样方法的随机性.
53.(2014·天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.
【答案】60
【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.
【解析】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,
∴应从一年级本科生中抽取学生人数为:.
故答案为60.
54.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.
【答案】18
【解析】应从丙种型号的产品中抽取件,故答案为18.
点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即ni∶Ni=n∶N.
55.(2024·全国)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与之差的绝对值不大于的概率为 .
【答案】
【分析】根据排列可求基本事件的总数,设前两个球的号码为,第三个球的号码为,则,就的不同取值分类讨论后可求随机事件的概率.
【解析】从6个不同的球中不放回地抽取3次,共有种,
设前两个球的号码为,第三个球的号码为,则,
故,故,
故,
若,则,则为:,故有2种,
若,则,则为:,
,故有10种,
当,则,则为:
,
,
故有16种,
当,则,同理有16种,
当,则,同理有10种,
当,则,同理有2种,
共与的差的绝对值不超过12时不同的抽取方法总数为,
故所求概率为.
故答案为:
56.(2024·广东江苏)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .
【答案】/0.5
【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.
【解析】设甲在四轮游戏中的得分分别为,四轮的总得分为.
对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲得分的出牌组合有六种,从而甲在该轮得分的概率,所以.
从而.
记.
如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以;
如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以.
而的所有可能取值是0,1,2,3,故,.
所以,,两式相减即得,故.
所以甲的总得分不小于2的概率为.
故答案为:.
【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.
57.(2023·天津)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为.且其中的黑球比例依次为.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 .
【答案】 /
【分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空;
根据古典概型的概率公式可求出第二个空.
【解析】设甲、乙、丙三个盒子中的球的个数分别为,所以总数为,
所以甲盒中黑球个数为,白球个数为;
乙盒中黑球个数为,白球个数为;
丙盒中黑球个数为,白球个数为;
记“从三个盒子中各取一个球,取到的球都是黑球”为事件,所以,
;
记“将三个盒子混合后取出一个球,是白球”为事件,
黑球总共有个,白球共有个,
所以,.
故答案为:;.
58.(2022·浙江)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为,则 , .
【答案】 , /
【分析】利用古典概型概率公式求,由条件求分布列,再由期望公式求其期望.
【解析】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有种取法,其中所抽取的卡片上的数字的最小值为2的取法有种,所以,
由已知可得的取值有1,2,3,4,
,,
,
所以,
故答案为:,.
59.(2022·全国)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 .
【答案】.
【分析】根据古典概型的概率公式即可求出.
【解析】从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率.
故答案为:.
60.(2022·全国)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .
【答案】/0.3
【分析】根据古典概型计算即可
【解析】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,
有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法;
其中,甲、乙都入选的选法有3种,故所求概率.
故答案为:.
解法二:从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为,所以甲、乙都入选的概率
故答案为:
四、解答题
61.(2014·山东)某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.
【答案】(1)这6件样品中来自A、B、C各车间产品的数量分别为1,3,2
(2)
【分析】(1)求出A、B、C三个不同车间生产同一产品的数量之比,从而求出这6件样品中来自A、B、C各车间产品的数量;
(2)利用列举法求出古典概型的概率.
【解析】(1)因为A、B、C三个不同车间生产同一产品的数量之比为,
故这6件样品中来自A车间的产品数量为,来自B车间产品的数量为,
来自C车间产品的数量为,
故这6件样品中来自A、B、C各车间产品的数量分别为1,3,2.
(2)来自A车间的产品设为,来自B车间的产品设为,来自C车间产品设为,
在这6件样品中随机抽取2件进行进一步检测,有以下情况:
,共15种情况,
其中这2件产品来自相同车间的情况有,共4种情况,
故这2件产品来自相同车间的概率为.
62.(2022·全国)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:,
【答案】(1)A,B两家公司长途客车准点的概率分别为,
(2)有
【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;
(2)根据表格中数据及公式计算,再利用临界值表比较即可得结论.
【解析】(1)根据表中数据,A共有班次260次,准点班次有240次,
设A家公司长途客车准点事件为M,
则;
B共有班次240次,准点班次有210次,
设B家公司长途客车准点事件为N,
则.
A家公司长途客车准点的概率为;
B家公司长途客车准点的概率为.
(2)列联表
=,
根据临界值表可知,有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
63.(2021·全国)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.
【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.
(2)根据题目所给判断依据,结合(1)的结论进行判断.
【解析】(1),
,
,
.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
64.(2023·全国)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,.试验结果如下:
记,记的样本平均数为,样本方差为.
(1)求,;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
【答案】(1),;
(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
【分析】(1)直接利用平均数公式即可计算出,再得到所有的值,最后计算出方差即可;
(2)根据公式计算出的值,和比较大小即可.
【解析】(1),
,
,
的值分别为: ,
故
(2)由(1)知:,,故有,
所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
65.(2022·全国)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
【答案】(1);
(2)分布列见解析,.
【分析】(1)设甲在三个项目中获胜的事件依次记为,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;
(2)依题可知,的可能取值为,再分别计算出对应的概率,列出分布列,即可求出期望.
【解析】(1)设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为
.
(2)依题可知,的可能取值为,所以,
,
,
,
.
即的分布列为
期望.
66.(2022·北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
【答案】(1)0.4
(2)
(3)丙
【分析】(1) 由频率估计概率即可
(2) 求解得X的分布列,即可计算出X的数学期望.
(3) 计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.
【解析】(1)由频率估计概率可得
甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,
故答案为0.4
(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3
,
,
,
.
∴X的分布列为
∴
(3)丙夺冠概率估计值最大.
因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为,甲获得9.80的概率为,乙获得9.78的概率为.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.
67.(2021·全国)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?
附:
【答案】(1)75%;60%;
(2)能.
【分析】根据给出公式计算即可
【解析】(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
68.(2019·全国)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:.
【答案】(1) 增长率超过的企业比例为,产值负增长的企业比例为;(2)平均数;标准差.
【分析】(1)本题首先可以通过题意确定个企业中增长率超过的企业以及产值负增长的企业的个数,然后通过增长率超过的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;
(2)可通过平均值以及标准差的计算公式得出结果.
【解析】(1)由题意可知,随机调查的个企业中增长率超过的企业有个,
产值负增长的企业有个,
所以增长率超过的企业比例为,产值负增长的企业比例为.
(2)由题意可知,平均值,
标准差的平方:
,
所以标准差.
【点睛】本题考查平均值以及标准差的计算,主要考查平均值以及标准差的计算公式,考查学生从信息题中获取所需信息的能力,考查学生的计算能力,是简单题.
69.(2009·山东)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值.
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
【答案】(1)400 (2) (3)0.75
【分析】(1)由分层抽样按比例运算即可得解;
(2)先求出基本事件的个数,再由古典概型的概率公式求解即可;
(3)先求出平均数,再求概率即可.
【解析】解:(1)设该厂这个月共生产轿车辆,
由题意可得,即,
则;
(2)抽取一个容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车,用表示2辆舒适型轿车,表示3辆标准型轿车,用表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,
则在该样本中任取2辆的基本事件为,,,,,,,,,共10个,
事件为,,,,,,共7个,
故;
(3)由题意可得,
则满足该数与样本平均数之差的绝对值不超过0.5的有共6个,
故所求概率为,即.
【点睛】本题考查了分层抽样及平均数的求法,重点考查了古典概型概率公式,属中档题.
70.(2012·山东)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
【答案】(I) . (II)
【解析】试题分析:解:(I)从五张卡片中任取两张的所有可能情况有如下10种:
红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,
红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.
其中两张卡片的颜色不同且标号之和小于4的有3种情况,故
所求的概率为.
(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,
多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,
其中颜色不同且标号之和小于4的有8种情况,
所以概率为.
考点:古典概型
点评:主要是考查了古典概型的运用,属于基础题.
乙甲
1
2
3
4
5
6
1
2
3
4
5
6
亩产量
[900,950)
[950,1000)
[1000,1050)
[1050,1100)
[1100,1150)
[1150,1200)
频数
6
12
18
30
24
10
车间
A
B
C
数量
50
150
100
准点班次数
未准点班次数
A
240
20
B
210
30
0.100
0.050
0.010
2.706
3.841
6.635
准点班次数
未准点班次数
合计
A
240
20
260
B
210
30
240
合计
450
50
500
旧设备
9.8
10.3
10.0
10.2
9.9
9.8
10.0
10.1
10.2
9.7
新设备
10.1
10.4
10.1
10.0
10.1
10.3
10.6
10.5
10.4
10.5
试验序号
1
2
3
4
5
6
7
8
9
10
伸缩率
545
533
551
522
575
544
541
568
596
548
伸缩率
536
527
543
530
560
533
522
550
576
536
0
10
20
30
0.16
0.44
0.34
0.06
X
0
1
2
3
P
一级品
二级品
合计
甲机床
150
50
200
乙机床
120
80
200
合计
270
130
400
0.050
0.010
0.001
k
3.841
6.635
10.828
的分组
企业数
2
24
53
14
7
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
相关试卷
这是一份2025高考数学【真题精编】基础精选——图表分析题,文件包含14图表分析题20题教师版docx、14图表分析题20题学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份2025高考数学【真题精编】基础精选——情境应用题,文件包含15情境应用题40题教师版docx、15情境应用题40题学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
这是一份2025高考数学【真题精编】基础精选——函数与导数,文件包含06函数与导数70题教师版docx、06函数与导数70题学生版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。