搜索
    上传资料 赚现金
    英语朗读宝
    2015-2024年长沙中考数学真题汇编第1页
    2015-2024年长沙中考数学真题汇编第2页
    2015-2024年长沙中考数学真题汇编第3页
    还剩63页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2015-2024年长沙中考数学真题汇编

    展开

    这是一份2015-2024年长沙中考数学真题汇编,共66页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.下列实数中,为无理数的是( )
    A. 0.2 B. C. D. ﹣5
    2.下列运算中,正确的是( )
    A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b2
    3.2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线每天承动力约为185000人次,则数据185000用科学记数法表示为( )
    A. 1.85×105 B. 1.85×104 C. 1.8×105 D. 18.5×104
    4.下列图形中,是轴对称图形,但不是中心对称图形的是( )
    A. B. C. D.
    5.下列命题中,为真命题的是( )
    A. 六边形的内角和为360度 B. 多边形的外角和与边数有关
    C. 矩形的对角线互相垂直 D. 三角形两边的和大于第三边
    6.在数轴上表示不等式组的解集,正确的是( )
    A. B.
    C. D.
    7.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
    A. 平均数 B. 中位数 C. 众数 D. 方差
    8.下列说法中正确的是( )
    A. “打开电视机,正在播放《动物世界》”是必然事件
    B. 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖
    C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为
    D. 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查
    9.一次函数y=﹣2x+1的图象不经过( )
    A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
    10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )
    A. B.
    C. D.
    11.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为( )
    A. 米 B. 30sinα米 C. 30tanα米 D. 30csα米
    12.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )
    A. 562.5元 B. 875元 C. 550元 D. 750元
    二、填空题(共6小题,每小题3分,满分18分)
    13.一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是 .
    14.圆心角是60°且半径为2的扇形面积为 (结果保留π).
    15.把+进行化简,得到的最简结果是 (结果保留根号).
    16.分式方程=的解是x= .
    17.如图,在△ABC中,DE∥BC,,DE=6,则BC的长是 .
    18.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为 .

    三、解答题(共8小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,满分66分.解答应写出必要的文字说明,证明过程或演算步骤)
    19.计算:()﹣1+4cs60°﹣|﹣3|+.

    20.先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.

    21.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
    请根据所给信息,解答下列问题:
    (1)a= ,b= ;
    (2)请补全频数分布直方图;
    (3)这次比赛成绩的中位数会落在 分数段;
    (4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

    22.如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.
    (1)求证:△AOE≌△COF;
    (2)当α=30°时,求线段EF的长度.
    23.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
    (1)求该快递公司投递总件数的月平均增长率;
    (2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?

    24.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)求⊙M的半径;
    (2)求证:BD平分∠ABO;
    (3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.

    25.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.
    (1)求函数y=x+2的图象上所有“中国结”的坐标;
    (2)若函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;
    (3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?

    26.若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.
    (1)当x1=c=2,a=时,求x2与b的值;
    (2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;
    (3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.

    2016年湖南省长沙市中考数学试卷
    一、(在下列各题的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项.本大题共12小题,每小题3分,满分36分)
    1.下列四个数中,最大的数是( )
    A.-2 B. C.0 D.6
    2.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路全长99500米,则数据99500用科学记数法表示为( )
    A.0.995×105 B.9.95×105 C.9.95×104 D.9.5×104
    3.下列计算正确的是( )
    A. B. x8÷x2=x4 C. (2a)3=6a3 D . 3a3 · 2 a2=6a6
    4.六边形的内角和是( )
    A.540° B.720° C.900° D.360°
    5.不等式组的解集在数轴上表示为( )
    A. B. C. D.
    6.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )
    A. B. C. D.
    7.若一个三角形的两边长分别为3和7,则第三边长可能是( )
    A.6 B.3 C.2 D.11
    8.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( )
    A.(﹣2,﹣1) B.(﹣1,0) C.(﹣1,﹣1) D.(﹣2,0)
    9.下列各图中,∠1与∠2互为余角的是( )
    A. B . C. D.
    10.已知一组数据75,80,80,85,90,则它的众数和中位数分别为( )
    A.75,80 B.80,85 C.80,90 D.80,80
    11.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为( )
    A.160m B. 120m C.300 m D . 160m
    12.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:
    ①该抛物线的对称轴在y轴左侧;
    ②关于x的方程ax2+bx+c+2=0无实数根;
    ③a﹣b+c≥0;
    ④的最小值为3.
    其中,正确结论的个数为( )
    A.1个 B.2个 C.3个 D.4个

    二、填空题(共6小题,每小题3分,满分18分)
    13.分解因式:x2y﹣4y= .
    14.若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则实数m的取值范围是 .
    15.如图,扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为 .(结果保留π)
    16.如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为 .
    17.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为 .
    18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .

    三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。解答应写出必要的文字说明、证明过程或演算步骤)
    19.计算:4sin60°﹣|﹣2|﹣+(﹣1)2016.
    20.先化简,再求值:()+.其中,a=2,b=.
    21.为积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:
    请根据所给信息解答以下问题:
    (1)这次参与调查的居民人数为: ;
    (2)请将条形统计图补充完整;
    (3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;
    (4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?
    22.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.
    (1)求证:AB=BC;
    (2)若AB=2,AC=,求▱ABCD的面积.
    23.2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.
    (1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?
    (2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?
    24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.
    (1)求∠CDE的度数;
    (2)求证:DF是⊙O的切线;
    (3)若AC=2DE,求tan∠ABD的值.
    25.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
    (1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;
    (2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
    (3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
    26.如图,直线l:y=﹣x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
    (1)求△AOB的周长;
    (2)设AQ=t>0,试用含t的代数式表示点P的坐标;
    (3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
    ①6a+3b+2c=0;
    ②当m≤x≤m+2时,函数y的最大值等于,求二次项系数a的值.
    2017年长沙市初中毕业学业水平考试数学试卷
    一、选择题:
    1.下列实数中,为有理数的是( )
    A. B. C. D.1[来源:学|科|网Z|X|X|K]
    2.下列计算正确的是( )
    A. B. C. D.
    3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )
    A. B. C. D.
    4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.直角三角形B.正五边形
    C.正方形D.平行四边形
    5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )
    A.锐角三角形 B.之直角三角形 C.钝角三角形 D.等腰直角三角形
    6.下列说法正确的是( )
    A.检测某批次灯泡的使用寿命,适宜用全面调查 B.可能性是1%的事件在一次试验中一定不会发生
    C.数据3,5,4,1,的中位数是4 D.“367人中有2人同月同日生”为必然事件
    7.某几何体的三视图如图所示,因此几何体是( )
    A.长方形 B.圆柱 C.球 D.正三棱柱
    8.抛物线的顶点坐标是( )
    A. B. C. D.
    9.如图,已知直线,直线分别与相交,,则的度数为( )
    A. B. C. D.
    10.如图,菱形的对角线的长分别为,则这个菱形的周长为( )
    A. B. C. D.
    11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )
    A.24里 B.12里 C.6里 D.3里
    12.如图,将正方形折叠,使顶点与边上的一点重合(不与端点重合),折痕交于点,交于点,边折叠后与边交于点,设正方形的周长为,的周长为,则的值为( )
    A. B. C. D.随点位置的变化而变化
    二、填空题
    13.分解因式: .
    14.方程组的解是 .
    15.如图,为⊙的直径,弦于点,已知,则⊙的半径为 .
    16.如图,三个顶点的坐标分别为,以原点为位似中心,把这个三角形缩小为原来的,可以得到,已知点的坐标是,则点的坐标是 .
    17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)
    18.如图,点是函数与的图象在第一象限内的交点,,则的值为 .
    三、解答题
    19.计算:
    20.解不等式组,并把它的解集在数轴上表示出来.
    21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:
    请根据所给信息,解答以下问题:
    (1)表中 ; ;
    (2)请计算扇形统计图中组对应的圆心角的度数;
    (3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.
    22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔在北偏东方向上,继续航行1小时到达处,此时测得灯塔在北偏东方向上.
    (1)求的度数;
    (2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
    23.如图,与⊙相切于,分别交⊙于点,.
    (1)求证:;
    (2)已知,,求阴影部分的面积.
    24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购型商品的件数是用7500元采购型商品的件数的2倍,一件型商品的进价比一件型商品的进价多10元.
    (1)求一件型商品的进价分别为多少元?
    (2)若该欧洲客商购进型商品共250件进行试销,其中型商品的件数不大于型的件数,且不小于80件,已知型商品的售价为240元/件,型商品的售价为220元/件,且全部售出,设购进型商品件,求该客商销售这批商品的利润与之间的函数关系式,并写出的取值范围;
    (3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件型商品,就从一件型商品的利润中捐献慈善资金元,求该客商售完所有商品并捐献资金后获得的最大收益.
    25.若三个非零实数满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数构成“和谐三数组”.
    (1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.
    (2)若三点均在函数(为常数,)的图象上,且这三点的纵坐标构成“和谐三数组”,求实数的值;
    (3)若直线与轴交于点,与抛物线交于两点.
    ①求证:A,B,C三点的横坐标,,构成 “和谐三数组”;
    ②若,求点P() 与原点O的距离OP的取值范围。
    26.如图,抛物线与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E。
    (1)若为等腰直角三角形,求的值;
    (2)若对任意,两点总关于原点对称,求点的坐标(用含的式子表示);
    (3)当点运动到某一位置时,恰好使得,且点为线段的中点,此时对于该抛物线上任意一点总有成立,求实数的最小值.
    2018年湖南省长沙市中考数学试卷
    一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)
    1. 的相反数是( )
    A. B. 2C. D.
    2. 据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为( )
    A 0.102×105B. 10.2×103C. 1.02×104D. 1.02×103
    3. 下列计算正确的是( )
    A. a2+a3=a5B. C. (x2)3=x5D. m5÷m3=m2
    4. 下列长度的三条线段,能组成三角形的是( )
    A. 4cm,5cm,9cmB. 8cm,8cm,15cmC. 5cm,5cm,10cmD. 6cm,7cm,14cm
    5. 下列四个图形中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    6. 不等式组的解集在数轴上表示正确的是( )
    A. B.
    C. D.
    7. 将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是( )
    A. B. C. D.
    8. 下列判断正确的是( )
    A. 任意掷一枚质地均匀的硬币10次,一定有5次正面向上
    B. 天气预报说“明天降水概率为40%”,表示明天有40%的时间都在降雨
    C. “篮球队员在罚球线上投篮一次,投中”为随机事件
    D. “a是实数,|a|≥0”是不可能事件
    9. 估计的值在( )
    A. 2和3之间B. 3和4之间
    C. 4和5之间D. 5和6之间
    10. 小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是( )
    A. 小明吃早餐用了25minB. 小明读报用了30min
    C. 食堂到图书馆的距离为0.8kmD. 小明从图书馆回家的速度为0.8km/min
    11. 我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )
    A. 7.5平方千米B. 15平方千米C. 75平方千米D. 750平方千米
    12. 若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P( )
    A. 有且只有1个B. 有且只有2个C. 有且只有3个D. 有无穷多个
    二、填空题(本大题共6个小题,每小题3分,共18分)
    13. 计算:_______
    14. 某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.
    15. 在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
    16. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是_____.
    17. 已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
    18. 如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=_____度.
    三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。解答时写出必要的文字说明、证明过程或演算步骤)
    19. 计算:(﹣1)2018﹣+(π﹣3)0+4cs45°
    20. 先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.
    21. 为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:
    请根据图中信息,解答下列问题:
    (1)本次调查一共抽取了 名居民;
    (2)求本次调查获取的样本数据的平均数、众数和中位数;
    (3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.
    22. 为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.
    (1)开通隧道前,汽车从A地到B地大约要走多少千米?
    (2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
    23. 随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
    (1)打折前甲、乙两种品牌粽子每盒分别为多少元?
    (2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
    24. 如图,在△ABC中,AD是边BC上中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.
    (1)求CE的长;
    (2)求证:△ABC为等腰三角形.
    (3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.
    25. 如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.
    (1)求∠OCD的度数;
    (2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;
    (3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.
    26. 我们不妨约定:对角线互相垂直凸四边形叫做“十字形”.
    (1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 ;
    ②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形 “十字形”.(填“是”或“不是”)
    (2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;
    (3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;
    ①= ;②= ;③“十字形”ABCD的周长为12.
    湖南省长沙市2019年中考数学试题
    一、选择题
    1. 下列各数中,比﹣3小的数是( )
    A. ﹣5B. ﹣1C. 0D. 1
    2. 根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到15000000000元,确保安全供用电需求数据15000000000用科学记数法表示为( )
    A. B. C. D.
    3. 下列计算正确的是( )
    A. B.
    C. D.
    4. 下列事件中,是必然事件是( )
    A. 购买一张彩票,中奖B. 射击运动员射击一次,命中靶心
    C. 经过有交通信号灯的路口,遇到红灯D. 任意画一个三角形,其内角和是180°
    5. 如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( )
    A. 80°B. 90°C. 100°D. 110°
    6. 某个几何体的三视图如图所示,该几何体是( )
    A. B. C. D.
    7. 在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )
    A. 平均数B. 中位数C. 众数D. 方差
    8. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )
    A. 2πB. 4πC. 12πD. 24π
    9. 如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )
    A 20°B. 30°C. 45°D. 60°
    10. 如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )
    A. n mileB. 60 n mileC. 120 n mileD. n mile
    11. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( )
    A. B. C. D.
    12. 如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上一个动点,则的最小值是( )
    A. B. C. D. 10
    二、填空题
    13. 若式子在实数范围内有意义,则x的取值范围是_________.
    14. 分解因式:ax2-9a=____________________.
    15. 不等式组的解集是_______.
    16. 在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
    根据试验所得数据,估计“摸出黑球”概率是_______(结果保留小数点后一位).
    17. 如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.
    18. 如图,函数(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则;④若,则MD=2MA.其中正确的结论的序号是_______.
    三、解答题
    19. 计算:.
    20. 先化简,再求值:,其中a=3.
    21. 某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.

    请根据以上信息,解答下列问题:
    (1)本次调查随机抽取了 名学生;表中m= ,n= ;
    (2)补全条形统计图;
    (3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.
    22. 如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.
    (1)求证:BE=AF;
    (2)若AB=4,DE=1,求AG的长.
    23. 近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
    (1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
    (2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
    24. 根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.
    (1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).
    ①条边成比例的两个凸四边形相似;( 命题)
    ②三个角分别相等的两个凸四边形相似;( 命题)
    ③两个大小不同的正方形相似.( 命题)
    (2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,,求证:四边形ABCD与四边形A1B1C1D1相似.

    (3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFDE的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.
    25. 已知抛物线(b,c为常数).
    (1)若抛物线的顶点坐标为(1,1),求b,c的值;
    (2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;
    (3)在(1)的条件下,存在正实数m,n( m<n),当m≤x≤n时,恰好有,求m,n的值.
    26. 如图,抛物线(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.
    (1)求点A的坐标;
    (2)过点C作⊙P切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当,∠CAE=∠OBE时,求的值
    2021年湖南省长沙市中考数学试卷
    一、选择题(在下列各题的四个选项中,只有一项是符合题意的。请在答题卡中填涂符合题意的选项。本大题共10个小题,每小题3分,共30分)
    1.(3分)下列四个实数中,最大的数是( )
    A.﹣3B.﹣1C.πD.4
    2.(3分)2021年5月11日,第七次全国人口普查结果发布,长沙市人口总数首次突破千万,约为10040000人,将数据10040000用科学记数法表示为( )
    A.1.004×106B.1.004×107C.0.1004×108D.10.04×106
    3.(3分)下列几何图形中,是中心对称图形的是( )
    A.B.C.D.
    4.(3分)下列计算正确的是( )
    A.a3•a2=a5B.2a+3a=6aC.a8÷a2=a4D.(a2)3=a5
    5.(3分)如图,AB∥CD,EF分别与AB,CD交于点G,H,∠AGE=100°,则∠DHF的度数为( )
    A.100°B.80°C.50°D.40°
    6.(3分)如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为( )
    A.27°B.108°C.116°D.128°
    7.(3分)下列函数图象中,表示直线y=2x+1的是( )
    A. B.C. D.
    8.(3分)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )
    A.24,25B.23,23C.23,24D.24,24
    9.(3分)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是( )
    A.B.C.D.
    10.(3分)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是( )
    A.戊同学手里拿的两张卡片上的数字是8和9
    B.丙同学手里拿的两张卡片上的数字是9和7
    C.丁同学手里拿的两张卡片上的数字是3和4
    D.甲同学手里拿的两张卡片上的数字是2和9
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.(3分)分解因式:x2﹣2021x= .
    12.(3分)如图,在⊙O中,弦AB的长为4,圆心到弦AB的距离为2,则∠AOC的度数为 .
    13.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为 .
    14.(3分)若关于x的方程x2﹣kx﹣12=0的一个根为3,则k的值为 .
    15.(3分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为 .
    16.(3分)某学校组织了主题为“保护湘江,爱护家园”的手抄报作品征集活动.先从中随机抽取了部分作品,按A,B,C,D四个等级进行评价,然后根据统计结果绘制了如图两幅不完整的统计图.那么,此次抽取的作品中,等级为B等的作品份数为 .
    三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25题每题10分,共72分。解答应写出必要的文字说明、证明过程或演算步骤)
    17.(6分)计算:|﹣|﹣2sin45°+(1﹣)0+×.
    18.(6分)先化简,再求值:(x﹣3)2+(x+3)(x﹣3)+2x(2﹣x),其中x=﹣.
    19.(6分)人教版初中数学教科书八年级上册第35﹣36页告诉我们作一个三角形与已知三角形全等的方法:
    请你根据以上材料完成下列问题:
    (1)完成下面证明过程(将正确答案填在相应的空上):
    证明:由作图可知,在△A′B′C′和△ABC中,
    ∴△A'B'C′≌ .
    (2)这种作一个三角形与已知三角形全等的方法的依据是 .(填序号)
    ①AAS ②ASA ③SAS ④SSS
    20.(8分)“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.
    (1)求参与该游戏可免费得到景点吉祥物的频率;
    (2)请你估计纸箱中白球的数量接近多少?
    21.(8分)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.
    (1)求证:▱ABCD是矩形;
    (2)求AD的长.
    22.(9分)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.
    (1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?
    (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?
    23.(9分)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.
    (1)求证:∠B=∠ACB;
    (2)若AB=5,AD=4,求△ABE的周长和面积.
    24.(10分)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
    (1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r= ,s= ,t= (将正确答案填在相应的横线上);
    (2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;
    (3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
    25.(10分)如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.
    (1)求sin∠AOQ的值;
    (2)求的值;
    (3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.
    2020年长沙市中考数学
    一、选择题
    1.的值是( )
    A. B. 6C. 8D.
    2.下列图形中,是轴对称图形但不是中心对称图形的是( )
    A. B. C. D.
    3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为( )
    A. B. C. D.
    4.下列运算正确的是( )
    A. B. C. D.
    5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为土石方的任务,该运输公司平均运送土石方的速度(单位:天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是( )
    A. B. C. D.
    6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为( )
    A. 米B. 米C. 21米D. 42米
    7.不等式组的解集在数轴上表示正确的是( )
    A. B.
    C. D.
    8.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )
    A. 第一次摸出的球是红球,第二次摸出的球一定是绿球
    B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球
    C. 第一次摸出的球是红球,第二次摸出的球不一定是红球
    D. 第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是
    9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )
    A. ②③B. ①③C. ①④D. ②④
    10.如图,一块直角三角板的60度的顶点A与直角顶点C分别在平行线上,斜边AB平分,交直线GH于点E,则的大小为( )
    A. B. C. D.
    11.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得( )
    A. B. C. D.
    12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
    A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟
    二、填空题
    13.长沙地铁3号线、5号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了100名市民,得到了如下的统计表:
    这次调查的众数和中位数分别是___________________________.
    14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:
    第一步,A同学拿出三张扑克牌给B同学;
    第二步,C同学拿出三张扑克牌给B同学;
    第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,
    请你确定,最终B同学手中剩余的扑克牌的张数为___________________.
    15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____.
    16.如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合)平分,交PM于点E,交PQ于点F.
    (1) ___________________.
    (2)若,则___________________.
    三、解答题
    17.计算:
    18.先化简,再求值,其中
    19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
    已知:
    求作:的平分线
    做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,
    (2)分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点C
    (3)画射线OC,射线OC即所求.
    请你根据提供材料完成下面问题:
    (1)这种作已知角平分线的方法的依据是__________________(填序号).
    ① ② ③ ④
    (2)请你证明OC为的平分线.
    20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:
    (1)这次调查活动共抽取___________人;
    (2).
    (3)请将条形图补充完整
    (4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.
    21.如图,为直径,C为上的一点,AD与过点C的直线互相垂直,垂足为D,AC平分.
    (1)求证:DC为的切线;
    (2)若,求的半径.
    22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:
    (1)求A,B两种型号货车每辆满载分别能运多少吨生活物资;
    (2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A型号货车,试问至少还需联系多少辆B型号货车才能一次性将这批生活物资运往目的地.
    23.在矩形ABCD中,E为上的一点,把沿AE翻折,使点D恰好落在BC边上的点F.
    (1)求证:
    (2)若,求EC的长;
    (3)若,记,求的值.
    24.我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图像上关于原点对称的两点叫做一对“H点”,根据该约定,完成下列各题
    (1)在下列关于x函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”
    ①( ) ②( ) ③( )
    (2)若点与点关于x的“H函数” 的一对“H点”,且该函数的对称轴始终位于直线的右侧,求的值域或取值范围;
    (3)若关于x的“H函数” (a,b,c是常数)同时满足下列两个条件:①,②,求该H函数截x轴得到的线段长度的取值范围.
    25.如图,半径为4的中,弦AB的长度为,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE,OD,OE.
    (1)求的度数;
    (2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求的外心P所经过的路径的长度;
    (3)分别记的面积为,当时,求弦AC的长度.
    2022年长沙市初中学业水平考试试卷数学
    一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)
    1. 的相反数是( )
    A. B. C. D. 6
    2. 如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是( )
    A. B. C. D.
    3. 下列说法中,正确的是( )
    A. 调查某班45名学生的身高情况宜采用全面调查
    B. “太阳东升西落”是不可能事件
    C. 为了直观地介绍空气各成分百分比,最适合使用的统计图是条形统计图
    D. 任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次
    4. 下列计算正确是( )
    A B. C. D.
    5. 在平面直角坐标系中,点关于原点对称的点的坐标是( )
    A. B. C. D.
    6. 《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4,则这组数据的众数和中位数分别是( )
    A. 3,4B. 4,3C. 3,3D. 4,4
    7. 为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )
    A. 元B. 元C. 元D. 元
    8. 如图,,则的度数为( )
    A. B. C. D.
    9. 如图,PA,PB是的切线,A、B为切点,若,则的度数为( )
    A. B. C. D.
    10. 如图,在中,按以下步骤作图:
    ①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
    ②作直线PQ交AB于点D;
    ③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
    若,则AM的长为( )
    A. 4B. 2C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11. 若式子在实数范围内有意义,则实数的取值范围是___________.
    12. 分式方程的解是_____________ .
    13. 如图,A、B、C是上的点,,垂足为点D,且D为OC的中点,若,则BC的长为___________.
    14. 关于的一元二次方程有两个不相等的实数根,则实数t的值为___________.
    15. 为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有___________名.
    16. 当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它己被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”己经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:
    YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;
    DDDD(懂的都懂):等于;
    JXND(觉醒年代):个位数字是6;
    QGYW(强国有我):我知道,所以我估计比大.
    其中对的理解错误的网友是___________(填写网名字母代号).
    三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)
    17. 计算:.
    18. 解不等式组:
    19. 为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为的斜坡,坡角于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为.
    (1)求该斜坡的高度BD;
    (2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)
    20. 2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题“为推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.
    (1)表中___________,___________,___________;
    (2)请补全频数分布直方图:
    (3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.
    21. 如图,AC平分,垂足分别为B,D.
    (1)求证:;
    (2)若,求四边形ABCD的面积.
    22. 电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:
    (1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.
    ①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.( )
    ②刘三姐的姐妹们给出的答案是唯一正确的答案.( )
    ③该歌词表达的数学题的正确答案有无数多种.( )
    (2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.
    23. 如图,在中,对角线AC,BD相交于点O,.
    (1)求证:;
    (2)若点E,F分别为AD,AO的中点,连接EF,,求BD的长及四边形ABCD的周长.
    24. 如图,四边形ABCD内接于,对角线AC,BD相交于点E,点F在边AD上,连接EF.
    (1)求证:;
    (2)当时,则___________;___________;___________.(直接将结果填写在相应的横线上)
    (3)①记四边形ABCD,的面积依次为,若满足,试判断,的形状,并说明理由.
    ②当,时,试用含m,n,p的式子表示.
    25. 若关于x函数y,当时,函数y的最大值为M,最小值为N,令函数,我们不妨把函数h称之为函数y的“共同体函数”.
    (1)①若函数,当时,求函数y的“共同体函数”h的值;
    ②若函数(,k,b为常数),求函数y的“共同体函数”h的解析式;
    (2)若函数,求函数y的“共同体函数”h的最大值;
    (3)若函数,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数”h的最小值.若存在,求出k的值;若不存在,请说明理由.
    2023年湖南省长沙市中考数学试卷
    一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)
    1.(3分)下列各数中,是无理数的是( )
    A.B.πC.﹣1D.0
    2.(3分)下列图形中,是轴对称图形的是( )
    A. B.C. D.
    3.(3分)下列计算正确的是( )
    A.x2•x3=x5 B.(x3)3=x6 C.x(x+1)=x2+1 D.(2a﹣1)2=4a2﹣1
    4.(3分)下列长度的三条线段,能组成三角形的是( )
    A.1,3,4B.2,2,7C.4,5,7D.3,3,6
    5.(3分)2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为( )
    A.1.4×1012B.0.14×1013C.1.4×1013D.14×1011
    6.(3分)如图,直线m∥直线n,点A在直线n上,点B在直线m上,连接AB,过点A作
    AC⊥AB,交直线m于点C.若∠1=40°,则∠2的度数为( )
    A.30°B.40°C.50°D.60°
    7.(3分)长沙市某一周内每日最高气温.情况如图所示,下列说法中,错误的是( )
    A.这周最高气温是32℃ B.这组数据的中位数是30
    C.这组数据的众数是24 D.周四与周五的最高气温相差8℃
    8.(3分)不等式组的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    9.(3分)下列一次函数中,y随x的增大而减小的函数是( )
    A.y=2x+1B.y=x﹣4C.y=2xD.y=﹣x+1
    10.(3分)“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品,现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是( )
    A.B.C.D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.(3分)分解因式:a2﹣100= .
    12.(3分)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是 小时.
    13.(3分)如图,已知∠ABC=50°,点D在BA上,以点B为圆心,BD长为半径画弧,交BC于点E,连接DE,则∠BDE的度数是 度.
    14.(3分)如图,在平面直角坐标系中,点A在反比例函数y=(k为常数,k>0,x>0)的图象上,过点A作x轴的垂线,垂足为B,连接OA.若△OAB的面积为,则k= .
    15.(3分)如图,点A,B,C在半径为2的⊙O上,∠ACB=60°,OD⊥AB,垂足为E,交⊙O于点D,连接OA,则OE的长度为 .
    16.(3分)毛主席在《七律二首•送瘟神》中写道“坐地日行八万里,巡天遥看一千河”,我们把地球赤道看成一个圆,这个圆的周长大约为“八万里”.对宇宙千百年来的探索与追问,是中华民族矢志不渝的航天梦想.从古代诗人屈原发出的《天问》,到如今我国首次火星探测任务被命名为“天问一号”,太空探索无上境,伟大梦想不止步.2021年5月15日,我国成功实现火星着陆.科学家已经探明火星的半径大约是地球半径的,若把经过火星球心的截面看成是圆形的,则该圆的周长大约为 万里.
    三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)
    17.(6分)计算:|﹣|+(﹣2023)0﹣2sin45°﹣()﹣1.
    18.(6分)先化简,再求值:(2﹣a)(2+a)﹣2a(a+3)+3a2,其中a=﹣.
    19.(6分)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8km,仰角为30°;10s后飞船到达B处,此时测得仰角为45°.
    (1)求点A离地面的高度AO;
    (2)求飞船从A处到B处的平均速度.(结果精确到0.1km/s,参考数据:≈1.73)
    20.(8分)为增强学生安全意识,某校举行了一次全校3000名学生参加的安全知识竞赛.从中随机抽取n名学生的竞赛成绩进行了分析,把成绩分成四个等级(D:60≤x<70;C:70≤x<80;B:80≤x<90;A:90≤x≤100),并根据分析结果绘制了不完整的频数分布直方图和扇形统计图.
    请根据以上信息,解答下列问题:
    (1)填空:n= ,m= ;
    (2)请补全频数分布直方图;
    (3)扇形统计图中B等级所在扇形的圆心角度数为 度;
    (4)若把A等级定为“优秀”等级,请你估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数.
    21.(8分)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.
    (1)求证:△ABE≌△ACD;
    (2)若AE=6,CD=8,求BD的长.
    22.(9分)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共16个班级参加.
    (1)比赛积分规定:每场比赛都要分出胜负,胜一场积3分,负一场积1分.某班级在15场比赛中获得总积分为41分,问该班级胜负场数分别是多少?
    (2)投篮得分规则:在3分线外投篮,投中一球可得3分,在3分线内(含3分线)投篮,投中一球可得2分,某班级在其中一场比赛中,共投中26个球(只有2分球和3分球),所得总分不少于56分,问该班级这场比赛中至少投中了多少个3分球?
    23.(9分)如图,在▱ABCD中,DF平分∠ADC,交BC于点E,交AB的延长线于点F.
    (1)求证:AD=AF;
    (2)若AD=6,AB=3,∠A=120°,求BF的长和△ADF的面积.
    24.(10分)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC=∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC的延长线于点N,交⊙O于点M(点M在劣弧上).
    (1)BD是⊙O的切线吗?请作出你的判断并给出证明;
    (2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tanD)2的值;
    (3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.
    25.(10分)我们约定:若关于x的二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2同时满足+(b2+b1)2+|c2﹣a1|=0,(b1﹣b2)2023≠0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:
    (1)若关于x的二次函数y1=2x2+kx+3与y2=mx2+x+n互为“美美与共”函数,求k,m,n的值;
    (2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图象上运动,函数y2与y1互为“美美与共”函数.
    ①求函数y2的图象的对称轴;
    ②函数y2的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;
    (3)在同一平面直角坐标系中,若关于x的二次函数y1=ax2+bx+c与它的“美美与共”函数y2的图象顶点分别为点A,点B,函数y1的图象与x轴交于不同两点C,D,函数y2的图象与x轴交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.
    2024年长沙市初中学业水平考试试卷数学
    一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)
    1. 下列图形中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )
    A. B. C. D.
    3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是、最高温度是,则它能够耐受的温差是( )
    A. B. C. D.
    4. 下列计算正确的是( )
    A. B. C. D.
    5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )
    A. 9.2B. 9.4C. 9.5D. 9.6
    6. 在平面直角坐标系中,将点向上平移2个单位长度后得到点坐标为( )
    A. B. C. D.
    7. 对于一次函数,下列结论正确的是( )
    A. 它的图象与y轴交于点B. y随x的增大而减小
    C. 当时,D. 它的图象经过第一、二、三象限
    8. 如图,在中,,,.则的度数为( )
    A. B. 60°C. D.
    9. 如图,在中,弦长为8,圆心O到的距离,则的半径长为( )
    A. 4B. C. 5D.
    10. 如图,在菱形中,,,点E是边上的动点,连接,,过点A作于点F.设,,则y与x之间的函数解析式为(不考虑自变量x的取值范围)( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).
    12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.
    13. 要使分式有意义,则x需满足的条件是______.
    14. 半径为4,圆心角为的扇形的面积为______(结果保留).
    15. 如图,在中,点D,E分别是的中点,连接DE.若,则AB的长为______.
    16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份,得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.
    三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)
    17. 计算:.
    18. 先化简,再求值:,其中.
    19. 如图,在中,,,,分别以点A,B为圆心,大于AB的长为半径画弧,两弧分别交于点M和N,作直线分别交于点D,E,连接
    (1)求CD的长;
    (2)求的周长.
    20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图
    请根据以上信息,解答下列问题:
    (1)本次调查活动随机抽取了_____人;表中______,______;
    (2)请补全条形统计图;
    (3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;
    (4)若此次汽车展览会参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?
    21. 如图,点C在线段上,,,.
    (1)求证:;
    (2)若,求的度数.
    22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A、B两种奥运主题湘绣作品作为纪念品.已知购买1件A种湘绣作品与2件B种湘绣作品共需要700元,购买2件A种湘绣作品与3件B种湘绣作品共需要1200元.
    (1)求A种湘绣作品和B种湘绣作品的单价分别为多少元?
    (2)该国际旅游公司计划购买A种湘绣作品和B种湘绣作品共200件,总费用不超过50000元,那么最多能购买A种湘绣作品多少件?
    23. 如图,在中,对角线,相交于点O,.
    (1)求证:;
    (2)点E在边上,满足.若,,求的长及的值.
    24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),
    可分为四种类型,我们不妨约定:
    既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;
    只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;
    只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;
    既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.
    请你根据该约定,解答下列问题:
    (1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,
    ①平行四边形一定不“平凡型无圆”四边形; ( )
    ②内角不等于的菱形一定是“内切型单圆”四边形; ( )
    ③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有.( )
    (2)如图1,已知四边形内接于,四条边长满足:.
    ①该四边形是“______”四边形(从约定的四种类型中选一种填入);
    ②若的平分线交于点E,的平分线交于点F,连接.求证:是的直径.
    (3)已知四边形是“完美型双圆”四边形,它的内切圆与分别相切于点E,F,G,H.
    ①如图2.连接交于点P.求证:.
    ②如图3,连接,若,,,求内切圆的半径r及的长.
    25. 已知四个不同的点,,,都在关于x的函数(a,b,c是常数,)的图象上.
    (1)当A,B两点的坐标分别为,时,求代数式的值;
    (2)当A,B两点的坐标满足时,请你判断此函数图象与x轴的公共点的个数,并说明理由;
    (3)当时,该函数图象与x轴交于E,F两点,且A,B,C,D四点的坐标满足:,.请问是否存在实数,使得AB,CD,这三条线段组成一个三角形,且该三角形的三个内角的大小之比为?若存在,求出m的值和此时函数的最小值;若不存在,请说明理由(注:表示一条长度等于的m倍的线段).
    尺码/cm
    22
    22.5
    23
    23.5
    24
    24.5
    25
    销售量/双
    4
    6
    6
    10
    2
    1
    1
    成绩x/分
    频数
    频率
    50≤x<60
    10
    0.05
    60≤x<70
    20
    0.10
    70≤x<80
    30
    b
    80≤x<90
    a
    0.30
    90≤x<100
    80
    0.40
    组别
    分数段
    频次
    频率
    A
    60≤x<70
    17
    0.17
    B
    70≤x<80
    30
    a
    C
    80≤x<90
    b
    0.45
    D
    90≤x<100
    8
    0.08
    摸球实验次数
    100
    1000
    5000
    10000
    50000
    100000
    “摸出黑球”的次数
    36
    387
    2019
    4009
    19970
    40008
    “摸出黑球”的频率
    (结果保留小数点后三位)
    0.360
    0.387
    0.404
    0.401
    0.399
    0.400
    等级
    频数
    频率
    优秀
    21
    42%
    良好
    m
    40%
    合格
    6
    n%
    待合格
    3
    6%
    已知:△ABC.
    求作:△A′B′C′,使得△A′B′C′≌△ABC.
    作法:如图.
    (1)画B'C′=BC;
    (2)分别以点B′,C′为圆心,线段AB,AC长为半径画弧,两弧相交于点A′;
    (3)连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.
    第一批
    第二批
    A型货车的辆数(单位:辆)
    1
    2
    B型货车的辆数(单位:辆)
    3
    5
    累计运送货物的顿数(单位:吨)
    28
    50
    备注:第一批、第二批每辆货车均满载
    成绩x/分
    频数
    频率
    15
    0.1
    a
    0.2
    45
    b
    60
    c
    类型
    人数
    百分比
    纯电
    m
    混动
    n
    氢燃料
    3
    油车
    5

    相关试卷

    2020-2024长沙中考数学真题汇编:

    这是一份2020-2024长沙中考数学真题汇编,共36页。

    2021年湖南长沙中考数学真题:

    这是一份2021年湖南长沙中考数学真题,共4页。

    长沙历年中考数学真题压轴题汇总:

    这是一份长沙历年中考数学真题压轴题汇总,共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map