所属成套资源:初中数学新北师大版七年级下册教案(2025春)
初中数学北师大版(2024)七年级下册(2024)1 现实中的变量表格教案
展开
这是一份初中数学北师大版(2024)七年级下册(2024)1 现实中的变量表格教案,共4页。教案主要包含了教学目标,教学重点,教学难点,教学过程,课后作业,教学后记等内容,欢迎下载使用。
1.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子.
2.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测.
3.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感.
4.了解可以用列表表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力.
【教学重点】
借助表格,分清什么是变量,理解自变量、因变量以及因变量随自变量的变化情况.
【教学难点】
将具体问题抽象成数学问题,由数据进行推断,并能有条理地、清晰地阐述自己的观点,并能根据表格中的有关信息预测变化趋势.
【教学过程】
一、情景导入,初步认知
我们生活在变化的世界中,很多东西都在发生变化,请学生列举一些日常生活中经常发生变化的事物.如:随年龄的增长,身高、体重都发生了变化;随着时间的变化汽车行驶的路程也在变化;烧一壶水10分钟水开了……
[教学说明]
通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力.
二、思考探究,获取新知
1.实验操作:
利用实验器材——小车、木板、秒表、调节高度的装置,让学生参与到“小车下滑的时间”的实验中,并一起完成表格.
利用同一块木板,测量小车从不同的高度下滑的时间,然后将得到的数据填入下表:
根据上表回答下列问题:
(1)支撑物高度为70cm时,小车下滑时间是多少?
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10cm,t的变化情况相同吗?
(4)估计当h=110cm时,t的值是多少.你是怎样估计的?
(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?
[教学说明]
通过数据感受具体的变化及其中的蕴含的规律;让学生参与到收集数据的试验过程中,亲身感受随着支撑物高度的增加,小车下滑所用的时间越来越少.问题(4)是进行预测,对学生来说有一定难度,鼓励学生充分进行交流,培养他们从表格获取信息的能力.
2.议一议∶
我国从1949年到2009年的人口统计数据如下(精确到0.01亿):
(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?
(2)x和y哪个是自变量?哪个是因变量?
(3)从1949年起,时间每向后推移10年,我国人口是怎样变化的?
(4)你能根据此表格预测2019年时我国人口将会是多少吗?
[归纳结论]
在“小车下滑的时间”中,
支撑物的高度h和小车下滑的时间t都在变化,它们都是变量.其中小车下滑的时间t随支撑物的高度h的变化而变化.支撑物的高度h是自变量,小车下滑的时间t是因变量.
在这一变化过程中,小车下滑的距离(木板的长度)一直没有变化.像这种在变化过程中数值始终不变的量叫做常量.
在人口变化中,我国人口总数y随时间x的变化而变化,x是变量,y是因变量.
借助表格,我们可以表示因变量随自变量的变化而变化的情况.在表格里,通常把自变量放在上(或左)面,把因变量放在下(或右)面.
[教学说明]
通过两个例子,理解变量、自变量、因变量、常量这些概念,同时体会表格对于数据的整理和呈现起到的作用.对于解决日常生活中变化的事物很有帮助.
三、运用新知,深化理解
1.小明和他爸爸做了一个实验,小明由一幢245m高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:
下列说法错误的是(A)
A.苹果每秒下落的路程不变
B.苹果每秒下落的路程越来越长
C.苹果下落的速度越来越快
D.可以推测,苹果下落7秒后到达地面
2.2017年1-12月某地大米的平均价格如下表所示,其中自变量是月份,因变量是平均价格;当自变量等于9,10时,因变量的值2.8最小.
3.下表是小华做观察水的沸腾实验时所记录的数据:
(1)时间是8分钟时,水的温度为100℃;
(2)此表反映了变量温度和时间之间的关系,其中时间是自变量,温度是因变量;
(3)在0至8分钟时间内,温度随时间增加而增加;8至12分钟时间内,水的温度不再变化.
4.下表给出了橘农王林去年橘子的销售额(元)随橘子卖出质量(千克)的变化的有关数据:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
解:表中反映了橘子的卖出质量与销售额之间的关系,橘子的卖出质量是自变量,销售额是因变量;
(2)当橘子卖出5千克时,销售额是多少?
解:当橘子卖出5千克时,销售额为10元;
(3)估计当橘子卖出50千克时,销售额是多少?
解:当橘子卖出50千克时,销售额为100元.
5.一次实验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值:
(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
解:上表反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是因变量;
(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?
解:因为不挂砝码时的弹簧长度即为弹簧的原长,所以弹簧的原长是18cm;
当所挂物体重量为3g时,弹簧长24cm;
(3)砝码质量每增加1g,弹簧的长度增加2cm.
6.金融危机虽然给世界各国带来不小的冲击,但某公司励精图治,决定投资开发新项目,通过考察确定有6个项目可供选择,各项目所需资金及预计年利润如下表:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
解:上表反映了所需资金和预计年利润之间的关系,所需资金是自变量,预计年利润率是因变量;
(2)如果投资一个4亿元的项目,那么其年利润预计有多少?
解:投资一个4亿元的项目,则其年利润预计有0.55千万元;
(3)如果要预计获得0.9千万元的年利润,投资一个项目需要多少资金?
解:预计获得0.9千万元的年利润,投资一个项目需要7亿资金;
(4)如果该公司可以拿出10亿元进行多个项目的投资,可以有几种投资方案?哪种方案年利润最大?最大是多少?
解:10亿元进行多个项目的投资,可以有一下几种投资方案:
项目1与项目2与项目5,
②项目3与项目4,
③项目2与项目6;
∴最大收益是1.45(亿元).
[教学说明]
对本环节知识进行巩固练习.在教学中要让学生体会不同情境下的变量之间的关系,如一个量随着另一个量增加的,一个量随着另一个量减少的,一个量随着另一个量先增加后减少或先减少后增加的,等等,避免单一的情况.
四、师生互动,课堂小结
师生互相交流总结本节所学的知识,如何从表格中获取信息;如何用表格表示变量之间的关系;如何对变化趋势进行预测.
五、教学板书
【课后作业】
1.布置作业:教材“习题3.1”中第1、2题.
2.完成同步练习册中本课时的练习.
【教学后记】
相关教案
这是一份初中北师大版(2024)3 用关系式表示变量之间的关系第二课时教案,共4页。教案主要包含了教学目标,教学重点,教学难点,教学过程,课后作业,教学后记等内容,欢迎下载使用。
这是一份初中数学3 用关系式表示变量之间的关系第一课时教学设计,共4页。教案主要包含了教学目标,教学重点,教学难点,教学过程,课后作业等内容,欢迎下载使用。
这是一份初中数学北师大版(2024)七年级下册(2024)2 用表格表示变量之间的关系教学设计,共4页。教案主要包含了教学目标,教学重点,教学难点,教学过程,课后作业,教学后记等内容,欢迎下载使用。