搜索
    上传资料 赚现金
    英语朗读宝

    初中数学新北师大版七年级下册第六章《变量之间的关系》教案(2025春)

    初中数学新北师大版七年级下册第六章《变量之间的关系》教案(2025春)第1页
    初中数学新北师大版七年级下册第六章《变量之间的关系》教案(2025春)第2页
    初中数学新北师大版七年级下册第六章《变量之间的关系》教案(2025春)第3页
    还剩17页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学新北师大版七年级下册第六章《变量之间的关系》教案(2025春)

    展开

    这是一份初中数学新北师大版七年级下册第六章《变量之间的关系》教案(2025春),共20页。
    第六章 变量之间的关系1 用表格表示的变量间关系【教学目标】1.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子.2.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测.3.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感.4.了解可以用列表表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力.【教学重点】借助表格,分清什么是变量,理解自变量、因变量以及因变量随自变量的变化情况.【教学难点】将具体问题抽象成数学问题,由数据进行推断,并能有条理地、清晰地阐述自己的观点,并能根据表格中的有关信息预测变化趋势.【教学过程】一、情景导入,初步认知我们生活在变化的世界中,很多东西都在发生变化,请学生列举一些日常生活中经常发生变化的事物.如:随年龄的增长,身高、体重都发生了变化;随着时间的变化汽车行驶的路程也在变化;烧一壶水10分钟水开了……[教学说明]通过举例,希望学生体会身边的事物无时无刻不在发生变化,培养学生善于观察的能力.二、思考探究,获取新知1.实验操作:利用实验器材——小车、木板、秒表、调节高度的装置,让学生参与到“小车下滑的时间”的实验中,并一起完成表格.利用同一块木板,测量小车从不同的高度下滑的时间,然后将得到的数据填入下表:根据上表回答下列问题:(1)支撑物高度为70cm时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10cm,t的变化情况相同吗?(4)估计当h=110cm时,t的值是多少.你是怎样估计的?(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?[教学说明]通过数据感受具体的变化及其中的蕴含的规律;让学生参与到收集数据的试验过程中,亲身感受随着支撑物高度的增加,小车下滑所用的时间越来越少.问题(4)是进行预测,对学生来说有一定难度,鼓励学生充分进行交流,培养他们从表格获取信息的能力.2.议一议∶我国从1949年到2009年的人口统计数据如下(精确到0.01亿): (1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?(2)x和y哪个是自变量?哪个是因变量?(3)从1949年起,时间每向后推移10年,我国人口是怎样变化的?(4)你能根据此表格预测2019年时我国人口将会是多少吗?[归纳结论]在“小车下滑的时间”中,支撑物的高度h和小车下滑的时间t都在变化,它们都是变量.其中小车下滑的时间t随支撑物的高度h的变化而变化.支撑物的高度h是自变量,小车下滑的时间t是因变量.在这一变化过程中,小车下滑的距离(木板的长度)一直没有变化.像这种在变化过程中数值始终不变的量叫做常量.在人口变化中,我国人口总数y随时间x的变化而变化,x是变量,y是因变量.借助表格,我们可以表示因变量随自变量的变化而变化的情况.在表格里,通常把自变量放在上(或左)面,把因变量放在下(或右)面.[教学说明]通过两个例子,理解变量、自变量、因变量、常量这些概念,同时体会表格对于数据的整理和呈现起到的作用.对于解决日常生活中变化的事物很有帮助.三、运用新知,深化理解1.小明和他爸爸做了一个实验,小明由一幢245m高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:下列说法错误的是(A)A.苹果每秒下落的路程不变B.苹果每秒下落的路程越来越长C.苹果下落的速度越来越快D.可以推测,苹果下落7秒后到达地面2.2017年1-12月某地大米的平均价格如下表所示,其中自变量是月份,因变量是平均价格;当自变量等于9,10时,因变量的值2.8最小.3.下表是小华做观察水的沸腾实验时所记录的数据:(1)时间是8分钟时,水的温度为100℃;(2)此表反映了变量温度和时间之间的关系,其中时间是自变量,温度是因变量;(3)在0至8分钟时间内,温度随时间增加而增加;8至12分钟时间内,水的温度不再变化.4.下表给出了橘农王林去年橘子的销售额(元)随橘子卖出质量(千克)的变化的有关数据:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?解:表中反映了橘子的卖出质量与销售额之间的关系,橘子的卖出质量是自变量,销售额是因变量;(2)当橘子卖出5千克时,销售额是多少?解:当橘子卖出5千克时,销售额为10元;(3)估计当橘子卖出50千克时,销售额是多少?解:当橘子卖出50千克时,销售额为100元.5.一次实验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度y(cm)与所挂砝码的质量x(g)的一组对应值:(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?解:上表反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是因变量;(2)弹簧的原长是多少?当所挂砝码质量为3g时,弹簧的长度是多少?解:因为不挂砝码时的弹簧长度即为弹簧的原长,所以弹簧的原长是18cm;当所挂物体重量为3g时,弹簧长24cm;(3)砝码质量每增加1g,弹簧的长度增加2cm.6.金融危机虽然给世界各国带来不小的冲击,但某公司励精图治,决定投资开发新项目,通过考察确定有6个项目可供选择,各项目所需资金及预计年利润如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?解:上表反映了所需资金和预计年利润之间的关系,所需资金是自变量,预计年利润率是因变量;(2)如果投资一个4亿元的项目,那么其年利润预计有多少?解:投资一个4亿元的项目,则其年利润预计有0.55千万元;(3)如果要预计获得0.9千万元的年利润,投资一个项目需要多少资金?解:预计获得0.9千万元的年利润,投资一个项目需要7亿资金;(4)如果该公司可以拿出10亿元进行多个项目的投资,可以有几种投资方案?哪种方案年利润最大?最大是多少?解:10亿元进行多个项目的投资,可以有一下几种投资方案:项目1与项目2与项目5,②项目3与项目4,③项目2与项目6;∴最大收益是1.45(亿元).[教学说明]对本环节知识进行巩固练习.在教学中要让学生体会不同情境下的变量之间的关系,如一个量随着另一个量增加的,一个量随着另一个量减少的,一个量随着另一个量先增加后减少或先减少后增加的,等等,避免单一的情况.四、师生互动,课堂小结师生互相交流总结本节所学的知识,如何从表格中获取信息;如何用表格表示变量之间的关系;如何对变化趋势进行预测.五、教学板书【课后作业】1.布置作业:教材“习题3.1”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】2 用关系式表示的变量间关系【教学目标】1.经历探索某些图形中变量之间关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感.2.能用适当的函数表示方法刻画简单实际问题中变量之间的关系.3.经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感.4.培养学生动手的能力,探索问题、研究问题的能力及应用数学知识的能力.通过教学让学生领悟探索问题和研究问题的方法.【教学重点】找问题中的自变量和因变量.【教学难点】根据关系式找自变量和因变量之间的对应关系.【教学过程】一、情景导入,初步认知1.我们在以前学习过的面积和体积公式有哪些?2.刚才同学们例举出的这些公式它其实反映了面积或体积与几何图形的长、宽、高或半径等之间的关系,我们能不能用这种方式来表示变量之间的关系呢?3.今天我们一起来学习用关系式表示变量间的关系.[教学说明]本环节的设置是让学生复习以前学过的公式,因为在用关系式表示变量间的关系中,很多时候需要用到之前学习过的公式,比如这堂课中的三角形的面积公式,圆锥的体积公式等.同时,在以前学生学习字母表示什么这个课题的时候,也知道了用字母可以表示运算规律、公式等.公式本身也可以看做是一个关系式,因此在这里我用学生熟悉的公式来引入课题.二、思考探究,获取新知1.三角形是日常生活中很常见的图形,决定一个三角形面积的因素有哪些?2.如图所示,△ABC底边BC上的高是6cm.当三角形的顶点C沿底边所在直线向点C运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是底边长,因变量是三角形的面积.(2)如果三角形的底边长为x(cm),那么三角形的面积y(cm2)可以表示为y=3x.(3)当底边长从12cm变化到3cm时,三角形的面积从36cm2变化到9cm2.(4)y=3x表示了三角形面积和底边长之间的关系,它是变量y随x变化的关系式.利用此关系式,我们可以根据任何一个自变量值求出相应的因变量的值.3.同学们能根据要求填写下列的表格吗?通过填表、探究,同学们能说出用关系式表达变量间变化关系的优势在哪些方面吗?4.如图所示,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥体积也随之而发生了变化.(1)在这个变化过程中,自变量是底面半径,因变量是圆锥体积.(2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)与r的关系式是V=4/3πr2.(3)当底面半径由1cm变化到10cm时,圆锥的体积由4/3πcm3变化到400/3πcm3.5.议一议:你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳、特别是二氧化碳的排放量的一种方式.(1)家居用电的二氧化碳排放量可以用关系式表示为0.785a,其中的字母表示耗电量.(2)在上述关系式中,耗电量每增加1kW·h,二氧化碳排放量增加0.785kg.当耗电量从1kW· h增加到100kW·h时,二氧化碳排放量从0.785kg增加到78.5kg.(3)小明家本月用电大约110kW·h、天然气20m3、自来水5t、油耗75L,请你计算一下小明家这几项的二氧化碳排放量.[教学说明]本环节的设计主要让学生在具体的情境中学会用关系式来表示变量间的关系,体会关系式能够直接的看出变量之间的数量关系这一特点,通过求值运算,体会关系式能够方便的根据其中一个变量精准的求出另一个变量.三、运用新知,深化理解1.已知变量x,y满足下面的关系则x,y之间用关系式表示为(C)2.长方形的周长为24厘米,其中一边为x(其中x>0),面积为y平方厘米,则这样的长方形中y与x的关系可以写为(C)A.y=x2 B.y=(12-x)2 C.y=(12-x)·x D.y=2(12-x)3.如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是(D)A.y=12x B.y=18x C.y=2/3 x D.y=3/2 x4.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为y=100+0.2x(不考虑利息税).5.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为y=40-5x,该汽车最多可行驶8小时.6.地面温度为15℃,如果高度每升高1千米,气温下降6℃,则高度h(千米)与气温t(℃)之间的关系式为h=15-6t.7.某校办工厂现在年产值是15万元,计划以后每年增加2万元.(1)写出年产值y(万元)与年数x之间的关系式.(2)求5年后的年产值.解:(1)y=15+2x;(2)25.8.某移动通信公司开设了两种通信业务,“甲种套餐”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“乙种套餐”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同?(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?解:(1)y1=50+0.4x,y2=0.6x;(2)由y1=y2,即50+0.4x=0.6x,解得x=250,当每个月通话250分钟时,两种移动通讯费用相同;(3)当x=300时,y1=170,y2=180,y1<y2,所以使用“甲种套餐”合算.[教学说明]巩固用关系式表示变量间的关系,并感受表格与关系式这两种方法表示变量间关系的特征.四、师生互动,课堂小结这节课你们自我感觉学得怎么样?你们有哪些收获?哪个组合作最好?哪些小组成员表现最积极?五、教学板书【课后作业】1.布置作业:教材“习题3.2”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】3 用图象表示的变量间关系第1课时 曲线型图像【教学目标】1.能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会利用图象找到准确的信息.2.培养学生的观察能力,预测能力,分析能力,动手操作能力,发展学生合作交流的能力和数学表达能力.3.让学生体会数学与实际生活的紧密联系,激发学生学习数学的兴趣,培养学生的数学应用意识.【教学重点】结合具体情境,理解图象上的点所表示的意义.并能从图象中获取变量间关系的信息.【教学难点】能从图象中获取变量之间关系的信息,并能用语言进行描述.【教学过程】一、情景导入,初步认知通过前面的学习,我们知道,可以用表格或关系式表示变量间的关系,同时掌握了根据自变量的取值求出相应因变量的方法.请你根据前面的知识解决下列问题.1.给定自变量x与因变量的y的关系式y=2x2-4x+8,填表:2.假设圆柱的高是5cm,当圆柱的底面半径由小到大变化时:(1)圆柱的体积如何变化?在这个变化中,自变量.因变量是什么?(2)如果圆柱底面半径为r(cm),圆柱的体积V可以表示为V=5πr2.(3)当r由1cm变化到10cm时,V由5πcm3变化到500πcm3.[教学说明]对上节课内容进行复习巩固,为本节课的教学做铺垫.二、思考探究,获取新知1.某地某天的温度变化情况如图所示,观察后回答下列问题:(1)上午9时的温度是27℃;12时的温度是31℃.(2)这一天15时的温度最高,最高温度是37℃;这一天3时的温度最低,最低温度是23℃.(3)这一天的温差是14℃,从最高温度到最低温度经过了12小时,(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.[归纳结论]上图表示了温度随时间的变化而变化的情况,它是温度与时间之间关系的图象.图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.[教学说明]让学生去体会温度这个变量和时间这个变量的关系,通过一系列的问题去体会到用图象表示变量之间的关系清晰明了.丰富学生的课外知识,激发学生学习的兴趣,为本节课的讲解做好铺垫.2.合作探究:你了解它吗—“沙漠之舟”.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.(1)一天中,骆驼的体温的变化范围是什么?它的体温从最低上升到最高需要多少时间?(2)从16时到24时,骆驼的体温下降了多少?(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?(6)你还知道那些关于骆驼的趣事?与同伴进行交流.[教学说明]可以让学生进一步巩固变量之间的关系,会利用图象解决实际问题.并清楚图象上的点所表示的内容.三、运用新知,深化理解1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是(B)A.沙漠 B.体温 C.时间 D.骆驼2.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断下列说法错误的是:(D)A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢3.某种动物的体温随时间的变化图如图示:(1)一天之内,该动物体温的变化范围是多少?解:34℃至40℃(2)一天内,它的最低和最高体温分别是多少?是几时达到的.解:最低体温是34℃,是4时和28时达到的;最高体温是40℃,是16时达到的.(3)一天内,它的体温在哪段时间内下降.解:0时至4时,16时至28时体温在下降.(4)依据图象,预计第二天8时它的体温是多少?解:36℃4.某市一天的温度变化如图所示,看图回答下列问题:(1)这一天中什么时间温度最高?是多少度?什么时间温度最低?是多少度?解:这一天中15时温度最高,是24度;6时温度最低,是4度.(2)在这一天中,从什么时间到什么时间温度开始上升?在这一天中,从什么时间到什么时间温度开始下降?解:6时至15时,温度开始上升;0时至6时和15时至24时开始下降.5.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式;(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?解:(1)y=1.6x;(2)50千克;(3)36元[教学说明]对本节课所学的内容加以巩固,对利用图象表示变量之间的关系加深理解.培养学生思考问题的全面性,提高学生的分析能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书【课后作业】1.布置作业:教材“习题3.3”中第1、2题.2.完成同步练习册中本课时的练习.【教学后记】第2课时 折线型图像【教学目标】1.通过速度随时间变化的实际情境,进一步经历从图象中分析变量之间关系的过程,加深对图象表示的理解.2.给出实际情境,能大致描绘出它的关系图.3.进一步发展从图象中获得信息的能力及有条理地进行语言表达的能力.4.用变化的观点去观察和解释身边发生的数学现象.5.发展学生应用数学的意识.【教学重点】进一步通过图象获取信息,分析变量之间的关系.【教学难点】由图象描述变量关系和由实际情境描述大致图象.【教学过程】一、情景导入,初步认知1.前几节课我们已经学习了表示变量之间关系的方法,有哪几种,每一种方法如何找自变量和因变量?哪位同学来说一下?2.某出租车每小时行驶60千米,若t小时行驶s千米,则自变量是行驶时间,因变量是行驶路程,s与t的关系式是s=60t.用图象来直观地反映变量之间的关系是表格法、关系式法所无法代替的.这节课我们继续来研究图象法表示速度的变化情况.[教学说明]通过复习表示变量的三种方法,体会学习过的三种表示变量之间关系的方法之间的联系,培养学生善于总结规律,善于观察并进行比较的能力,使学生明确每一种方法的优点,为本节课做铺垫.二、思考探究,获取新知1.同学们知道这幅图画的是什么吗?2.同学们都很聪明.每辆汽车上都有一个时速表用来指示汽车当时的速度,你会看这个表吗?3.你从家骑自行车到学校走同一条路的话,在这个过程中什么是常量什么是变量?4.速度和时间的关系我们可以用上节课学的图象法表示.下面是小明同学骑车的速度与行驶时间的关系用图象表示,下面的三个图象请分别用一句话描述.5.看图象的横轴合纵轴分别表示什么?6.怎样看图?图中上升、下降、水平部分分别是什么含义?[归纳结论]上升的线:从左至右呈上升状的线(代表速度增加);水平的线:与水平方向平行的线(代表匀速或静止);下滑的线:从左至右呈下降状的线(代表速度下降).[教学说明]从学生的亲身体验出发,很自然的引入新课,并对所学知识点理解深刻,记忆牢固.7.汽车在行驶的过程中,速度往往是变化的,下面的图象表示一辆汽车的速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在哪些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.各小组讨论相互补充,派代表回答问题,并解说从统计图中获取的信息及此统计图对于现实生活的实际意义.[教学说明]培养学生从图象中获取大量信息的读图能力,并通过亲身体验归纳总结图象表示法的特点及在现实生活中的实际意义.三、运用新知,深化理解1.伟伟从学校匀速回家,刚到家发现当晚要完成的试卷忘记在学校,于是马上以更快的速度匀速原路返回学校.这一情景中,速度v和时间t的函数图象(不考虑图象端点情况)大致是(A)2.星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是(B)A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回3.下列各情境分别可以用哪幅图来近似地刻画?(1)一杯越晾越凉的水(水温与时间的关系)(C)(2)把汽油用均匀速度注入油箱内(油量与时间的关系)(D)(3)跳高运动员跳越横杆(高度与时间的关系)(A)(4)匀速行驶的汽车(速度与时间的关系)(B)4.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下面可以近似地刻画出汽车在这段时间内的速度变化情况的是(B)5.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系(D)6.甲、乙两地相距80千米,A骑自行车,B骑摩托车沿相同路线由甲地到乙地行驶,两人行驶的路程y(千米)与时间x(时)的关系如图所示,请你根据图象回答或解决下面的问题:(1)谁出发较早?早多长时间?谁到达乙地较早?早多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的路程y(千米)与时间x(小时)的关系.解:(1)A出发较早,早3小时,B到达乙地较早,早3小时.(2)两人在途中行驶的速度分别是10千米/时,40千米/时.(3)自行车:y=10x;摩托车:y=40(x-3).[教学说明]对本节重点内容进行现场检测,及时了解教学目标的达成情况.四、师生互动,课堂小结通过本节课的学习你有哪些收获?本节课从图象中分析了两个变量之间的关系,结合温度变化直观而形象地从图中获得了变量之间的有关信息,用图象来直观地反映变量之间的关系是表格法、关系式法所无法代替的.五、教学板书【课后作业】1.布置作业:教材“习题3.4”中第3、4题.2.完成同步练习册中本课时的练习.【教学后记】章末复习【教学目标】1.回顾总结表示变量之间的方法,学会用变量之间关系的各种形式分析变量之间的关系,并作出预测.2.从常量的世界走入变量的世界,开始接触一种新的思维方式——用运动变化的观点去认识数学对象,发展符号感和抽象思维.发展有条理的思考和培养较强的表达能力.3.能从运动变化的角度解释生活中的数学现象,体验成就感,获得学习的快乐,发展对数学更高层次的认识.【教学重点】能从表格、图象中分析变量之间的关系,发展有条理地进行思考和表达的能力.【教学难点】运用表示变量之间关系的方法分析变量之间的关系,分析问题、解决问题,进行预测.【教学过程】一、知识结构[教学说明]引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.变量:在某一变化过程中,不断变化的量叫做变量.2.自变量,因变量:如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量.3.自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量.(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量.(3)利用具体情境来体会两者的依存关系.4.变量的表达方法:(1)表格(ⅰ)表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系.需注意以下几点:①首先要明确表格中所列的是哪两个量;②分清哪一个量为自变量,哪一个量为因变量;③结合实际情境理解它们之间的关系.(ⅱ)绘制表格表示两个变量之间关系.绘制表格时需注意以下几点:①列表时首先要确定各行各列的栏目;②一般有两行,第一行表示自变量,第二行表示因变量;③写出栏目名称,有时还根据问题内容写上单位;④在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值.⑤一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系.(2)关系式用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式.关系式的写法不同于方程,必须将因变量单独写在等号的左边.(3)图象①图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象.②图象能清楚地反映出因变量随自变量变化而变化的情况.③用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量.5.图象理解:①理解图象上某一个点的意义,一定要看横轴、纵轴分别表示哪个变量;②看该点所对应的横轴、纵轴的位置(数据);③从图象上还可以得到随着自变量的变化,因变量的变化趋势.[教学说明]复习本章所涉及的相关知识点,使学生了解他们之间的关系.三、典例精析,复习新知例1下面说法中正确的是(C)A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对例2一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s(千米)和行驶时间t(小时)的关系的是(B)例3星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理店修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图中,画出符合他们行驶的路程s(千米)与行驶时间t(时)之间的图象.解:图象略例4将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式,并求当x=20时,y的值.解:(1)4张白纸粘合后的总长度是20×4-3×2=74(厘米).(2)y=20x-2(x-1).当x=20时,y=20×20-2×(20-1)=362.例5甲骑自行车,乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图象如图所示.根据图象解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)解:(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为每分钟0.2公里,乙的速度为每分钟0.4公里.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.四、复习训练,巩固提高1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的(B)A.v=2m-2 B.v=m2-1 C.v=3m-3 D.v=m+12.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是(D)3.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是(C)A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了150千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时4.如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?解:(1)8点;(2)9点;13千米;(3)乙;(4)10点;(5)答案不唯一,略.5.小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?解:(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)24厘米;18厘米;(3)32厘米.6.某公司有2位股东,20名工人.从2015年至2017年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?解:(1)工人的平均工资:2016年6250元,2017年7500元.股东的平均利润:2016年37500元,2017年50000元.(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,所以(5000+1250x)×8=25000+12500x.解得x=6.所以到2021年每位股东年平均利润是每位工人年平均工资的8倍.五、师生互动,课堂小结通过本节课的复习,你有哪些收获?还存在哪些疑惑?【课后作业】1.布置作业:教材“复习题”中第6、7、10、12题.2.完成同步练习册中本课时的练习.【教学后记】

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map