人教A版(2019)高中数学必修第二册--正弦定理、余弦定理的简单应用学习-3学习任务单
展开
这是一份人教A版(2019)高中数学必修第二册--正弦定理、余弦定理的简单应用学习-3学习任务单,共3页。学案主要包含了学习目标,课上任务,学习疑问,课后作业,课后作业参考答案等内容,欢迎下载使用。
【学习目标】
1.主要通过一些具体例题来引导学生运用正弦定理和余弦定理,通过合适的边角转化,实现三角形各要素的求解;
2.学生在解题过程中感悟、总结正弦定理、余弦定理公式的特点和功能,能够识别、区分两个定理的使用条件,从而加深对定理的理解,进而灵活运用。
例1:在中,已知,,,求边的值.
例2:设a,b,c分别为△ABC内角A,B,C的对边,已知a=2,b=1,c=5,求角C的值.
例3:在中,角、、的对边边长分别是、、,若,,,求的值.
例4:在△ABC中,内角A,B,C的对边分别为a,b,c,已知2bcsC=2a+c.
求角B值.
例5:在中,,求角的值.
例6:在中,若,,,求的值.
例7:锐角△ABC的内角A,B,C的对边分别是a,b,c,b=1,ccsB=2sinA-csC,求B值.
【课上任务】
1.正弦定理、余弦定理的语言表述、符号表示分别是什么?
2.已知两角一边时,运用正弦定理解三角形需要注意什么?
3.已知两边及一边对角时,运用知书达理解三角形会遇到什么情况?
4.已知两边及夹角时,可以用正弦定理解三角形么?
5.余弦定理都适合哪些条件下解三角形?
6.在解三角形时,三角形内角和定理有什么用?
7.在已知三边解三角形时,如何选择公式?
8.在已知两边及一边对角时,对比运用正弦定理和余弦定理解题的过程,你有哪些心得?
9.在做边角转化时,正弦定理和余弦定理的特点是什么?
10.运用正弦定理和余弦定理联合解题,怎样决定何时选择运用哪个定理?
11.如何看待方程思想在解三角形中的地位?
12.题目条件结构不能很好地与总结的经验相对应时,如何进行边角转化挖掘信息?
【学习疑问】
13.本节课有几个环节,环节之间的联系和顺序?
14.哪个环节没弄清楚?
15.没看明白的文字,用自己的话怎么说?
16.知识上有什么困惑?
17.您想向老师提出什么问题?
【课后作业】
18.作业1
(1) 在△ABC中,,,,求角C的值.
(2)已知△ABC的内角A、B、C所对的边分别为a、b、c,若a+b=2c,3c=5b,求A值.
19.作业2
谈一谈本节课学习之后你的收获,对两个定理的理解及总结的经验,说一说你在运用正弦定理和余弦定理解三角形时会如何处理.
【课后作业参考答案】
(1)解:因为,所以解得 .所以 .所以.
(2)解:因为a=73b,c=53b,csA=b2+c2-a22bc=b2+(53b)2-(73b)22b(53b)=-12,
所以A=2π3.
相关学案
这是一份人教A版(2019)高中数学必修第二册-平面-3学习任务单,共2页。学案主要包含了学习目标,课上任务,学习疑问,课后作业,课后作业参考答案等内容,欢迎下载使用。
这是一份人教A版(2019)高中数学必修第二册-获取数据的途径3学习任务单,共5页。学案主要包含了学习目标,课上任务,学习疑问,课后作业,课后作业参考答案等内容,欢迎下载使用。
这是一份人教A版(2019)高中数学必修第二册-复数的几何意义-3学习任务单,共1页。学案主要包含了学习目标,课上学习任务,课后作业,课后作业参考答案等内容,欢迎下载使用。