搜索
    上传资料 赚现金
    英语朗读宝

    (浙江专用)中考数学二轮提升练习热点04 二次函数(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (浙江专用)中考数学二轮提升练习热点04 二次函数(原卷版).doc
    • 解析
      (浙江专用)中考数学二轮提升练习热点04 二次函数(解析版).doc
    (浙江专用)中考数学二轮提升练习热点04 二次函数(原卷版)第1页
    (浙江专用)中考数学二轮提升练习热点04 二次函数(原卷版)第2页
    (浙江专用)中考数学二轮提升练习热点04 二次函数(原卷版)第3页
    (浙江专用)中考数学二轮提升练习热点04 二次函数(解析版)第1页
    (浙江专用)中考数学二轮提升练习热点04 二次函数(解析版)第2页
    (浙江专用)中考数学二轮提升练习热点04 二次函数(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (浙江专用)中考数学二轮提升练习热点04 二次函数(2份,原卷版+解析版)

    展开

    这是一份(浙江专用)中考数学二轮提升练习热点04 二次函数(2份,原卷版+解析版),文件包含浙江专用中考数学二轮提升练习热点04二次函数原卷版doc、浙江专用中考数学二轮提升练习热点04二次函数解析版doc等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
    在中考中,二次函数可以是以选择、填空题的形式考察,也可以以解答题的形式考察,题目的难度都在中上等,也常作为中考中难度较大的一类压轴题的问题背景,占的分值也较高。而考察的内容主要有:二次函数图象与性质、解析式的求法、几何变化、以及函数与几何图形相关的综合应用等。其中,二次函数与其他综合相关的实际问题,虽然不是压轴出题,但是一般计算量较大,需要考试特别注意自己的计算不要有失误。
    二次函数的解析式:根据已知条件,选择合适的表达式求解;
    一般情况下:①当已知抛物线上的无规律的三个点的坐标时,常用一般式y=ax2+bx+c(a≠0)求其表达式;②当已知抛物线的顶点坐标(或者是对称轴)时,常用顶点式y=a(x-m)2+h(a≠0)求其表达式;
    ③若(x1,0)(x2,0)是抛物线与x轴的两个交点坐标,故知道抛物线与x轴两交点坐标时,常用交点式y=a(x-x1)(x-x2)(a≠0)求其表达式;
    2.二次函数图象及其性质:牢记顶点公式、注意识别图象与系数的关系、注意抛物线的对称性及其性质的应用;
    其中:二次函数符号判断类问题大致分为以下几种基本情形∶
    ①a、b、c单个字母的判断,a 由开口判断,b由对称轴判断(左同右异),c由图象与y轴交点判断;
    ②含有a、b两个字母时,考虑对称轴;
    ③含有a、b、c三个字母,且a 和b系数是平方关系,给x取值,结合图像判断,
    另:含有 a、b、c 三个字母,a和b系数不是平方关系,想办法消掉一到两个字母再判断∶
    ④含有b2和 4ac,考虑顶点坐标,或考虑△.
    ⑤其他类型,可考虑给x取特殊值,联立方程进行判断;也可结合函数最值,图像增减性进行判断。
    3.二次函数的简单应用:认真审题、分清问题类型、注意计算;
    利润最大化问题与二次函数模型:
    两公式:①单位利润=售价-进价;②总利润=单位利润×销量;
    两转化:①销量转化为售价的一次函数;②总利润转化为售价的二次函数;
    函数性质:利用二次函数的性质求出在自变量取值范围内的函数最值;
    与现实生活结合类问题,常需要自己先建立合适的平面直角坐标系,之后再根据信息做题;
    二次函数在中考中单独出题和结合出题的形式都比较常见,和实际应用结合时,多考察现实生活中的“生意问题”或者“省钱问题”;数学模型考察热点有:一次函数与二次函数结合问题、二次函数图象与性质、二次函数与几何图形结合的面积最值问题、二次函数与其他几何图形结合的点在坐标特征问题等。
    A卷(建议用时:80分钟)
    1.(2022•湖州)将抛物线y=x2向上平移3个单位,所得抛物线的解析式是( )
    A.y=x2+3B.y=x2﹣3C.y=(x+3)2D.y=(x﹣3)2
    2.(2022•宁波)点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m的取值范围为( )
    A.m>2B.m>C.m<1D.<m<2
    3.(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是( )
    A.0,4B.1,5C.1,﹣5D.﹣1,5
    4.(2022•温州)已知点A(a,2),B(b,2),C(c,7)都在抛物线y=(x﹣1)2﹣2上,点A在点B左侧,下列选项正确的是( )
    A.若c<0,则a<c<bB.若c<0,则a<b<c
    C.若c>0,则a<c<bD.若c>0,则a<b<c
    5.(2022•衢州)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为( )
    A.或4B.或﹣C.﹣或4D.﹣或4
    6.(2022•舟山)已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c的值为( )
    A.B.2C.D.1
    7.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是( )
    A.命题①B.命题②C.命题③D.命题④
    8.(2022•宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.
    (1)求y关于x的函数表达式.
    (2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?
    9.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
    (1)求抛物线L1的函数表达式.
    (2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    (3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
    10.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.
    (1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.
    (2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.
    (3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.
    11.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
    (1)求b,c的值.
    (2)当﹣4≤x≤0时,求y的最大值.
    (3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
    12.(2022•衢州)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.
    (1)求线段CE的函数表达式(写出x的取值范围).
    (2)当a=时,着陆点为P,求P的横坐标并判断成绩是否达标.
    (3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.
    ①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.
    ②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?(参考数据:≈1.73,≈2.24)
    13.“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:
    ①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax2+c,部分对应值如下表:
    ②该蔬菜供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.
    ③1~7月份该蔬菜售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函数表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.
    请解答下列问题:
    (1)求a,c的值.
    (2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.
    (3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.
    14.(2022•温州)根据以下素材,探索完成任务.
    15.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).
    (1)若h=1.5,EF=0.5m.
    ①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;
    ②求下边缘抛物线与x轴的正半轴交点B的坐标;
    ③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.
    (2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.
    16.(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.
    (1)①求点A,B,C的坐标;
    ②求b,c的值.
    (2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
    17.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).
    (1)求抛物线L1的函数表达式.
    (2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    (3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.
    18.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.
    (1)若二次函数的图象经过点(3,1).
    ①求这个二次函数的表达式;
    ②若y1=y2,求顶点到MN的距离;
    (2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
    B卷(建议用时:80分钟)
    1.(2023•瑞安市模拟)二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的部分对应值列表如下:
    则代数式9a+3b的值为( )
    A.4B.5C.6D.7
    2.(2023•秦都区校级二模)已知二次函数y=mx2﹣4mx(m为不等于0的常数),当﹣2≤x≤3时,函数y的最小值为﹣2,则m的值为( )
    A.±B.﹣或C.﹣或D.或2
    3.(2023•宁波模拟)若A(a,b),B(a﹣2,c)两点均在函数y=﹣(x﹣2022)2+2023的图象上,且2022≤a<2023,则b与c的大小系为( )
    A.b<cB.b≤cC.b>cD.b≥c
    4.(2023•慈溪市模拟)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥﹣2;②当x>0时,一定有y随x的增大而增大;③当四边形ABCD为平行四边形时.;④若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3.其中正确的是( )
    A.①④B.②③C.①②④D.①③④
    5.(2023•永嘉县校级模拟)对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为( )
    A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤
    C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥1
    6.(2023•宁波模拟)已知二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图所示,下列4个结论.
    ①abc<0;
    ②b<a+c;
    ③c<4b;
    ④a+b<k(ka+b)(k为常数,且k≠1).
    其中正确的结论有 (填写序号).
    7.(2023•鄞州区一模)苍溪独特的土壤、水分、气候组成的生态系统,成为猕猴桃的乐土,被国家誉为“红心猕猴桃第一县、红心猕猴桃之乡”.某水果店销售红心猕猴桃,平均每天可售出120箱,每箱盈利60元,春节临近,为了扩大销售,水果店决定采取适当的降价措施,经调查发现,每箱红心猕猴桃每降价5元,水果店平均每天可多售出20箱.设每箱红心猕猴桃降价x元.
    (1)当x=10时,求销售该红心猕猴桃的总利润;
    (2)设每天销售该红心猕猴桃的总利润为w元.
    ①求w与x之间的函数解析式;
    ②试判断总利润能否达到8200元,如果能达到,求出此时x的值;如果达不到,求出w的最大值.
    8.(2023•金华模拟)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.45m,球场的边界距O点的水平距离为18m.
    (1)当h=2.8时,求y与x的关系式(不要求写出自变量x的取值范围);
    (2)当h=2.8时,球能否越过球网?球会不会出界?请说明理由;
    (3)若球一定能越过球网,又不出边界,求h的取值范围.
    9.(2023•瑞安市模拟)根据以下素材,探索完成任务.
    10.(2023•舟山一模)已知二次函数y=ax2+bx+c(a≠0).
    (1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式;并根据图象直接写出函数值y≥3时自变量x的取值范围;
    (2)在(1)的条件下,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,求m的值.
    (3)已知a=b=c=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q=2,求证P+Q>6.
    11.(2023•义乌市校级模拟)定义:在平面直角坐标系中,有一条直线x=m,对于任意一个函数,作该函数自变量大于m的部分关于直线x=m的轴对称图形,与原函数中自变量大于或等于m的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x=m的“镜面函数”.例如:图①是函数y=x+1的图象,则它关于直线x=0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为,也可以写成y=|x|+1.
    (1)在图③中画出函数y=﹣2x+1关于直线x=1的“镜面函数”的图象.
    (2)函数y=x2﹣2x+2关于直线x=﹣1的“镜面函数”与直线y=﹣x+m有三个公共点,求m的值.
    (3)已知A(﹣1,0),B(3,0),C(3,﹣2),D(﹣1,﹣2),函数y=x2﹣2nx+2(n>0)关于直线x=0的“镜面函数”图象与矩形ABCD的边恰好有4个交点,求n的取值范围.
    12.(2023•婺城区模拟)如图,直线与x轴、y轴交于点A、C,抛物线经过点A、C,与x轴的另一个交点是B,点P是直线AC上的一动点.
    (1)求抛物线的解析式和点B的坐标;
    (2)如图1,求当OP+PB的值最小时点P的坐标;
    (3)如图2,过点P作PB的垂线交y轴于点D,是否存在点P,使以P、D、B为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
    售价x(元/千克)

    2.5
    3
    3.5
    4

    需求量y需求(吨)

    7.75
    7.2
    6.55
    5.8

    如何设计拱桥景观灯的悬挂方案?
    素材1
    图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.
    素材2
    为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
    问题解决
    任务1
    确定桥拱形状
    在图2中建立合适的直角坐标系,求抛物线的函数表达式.
    任务2
    探究悬挂范围
    在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
    任务3
    拟定设计方案
    给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
    x

    ﹣1
    0
    1
    2

    y

    c+6
    c
    c﹣2
    c

    如何设计喷水装置的高度?
    素材1
    图1为某公园的圆形喷水池,图2是其示意图,O为水池中心,喷头A、B之间的距离为20米,喷射水柱呈抛物线形,水柱距水池中心7m处达到最高,高度为5m.水池中心处有一个圆柱形蓄水池,其底面直径CD为12m,高CF为1.8米.
    素材2
    如图3,拟在圆柱形蓄水池中心处建一喷水装置OP (OP⊥CD),并从点P向四周喷射与图2中形状相同的抛物线形水柱,且满足以下条件:
    ①水柱的最高点与点P的高度差为0.8m;
    ②不能碰到图2中的水柱;
    ③落水点G,M的间距满足:GM:FM=2:7.
    问题解决
    任务1
    确定水柱形状
    在图2中以点O为坐标原点,水平方向为x轴建立直角坐标系,并求左边这条抛物线的函数表达式.
    任务2
    探究落水点位置
    在建立的坐标系中,求落水点G的坐标.
    任务3
    拟定喷水装置的高度
    求出喷水装置OP的高度.

    相关试卷

    (浙江专用)中考数学二轮提升练习重点04 中考数学解答题压轴题训练(2份,原卷版+解析版):

    这是一份(浙江专用)中考数学二轮提升练习重点04 中考数学解答题压轴题训练(2份,原卷版+解析版),文件包含浙江专用中考数学二轮提升练习重点04中考数学解答题压轴题训练原卷版doc、浙江专用中考数学二轮提升练习重点04中考数学解答题压轴题训练解析版doc等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。

    (浙江专用)中考数学二轮提升练习热点08 概率与统计(2份,原卷版+解析版):

    这是一份(浙江专用)中考数学二轮提升练习热点08 概率与统计(2份,原卷版+解析版),文件包含浙江专用中考数学二轮提升练习热点08概率与统计原卷版doc、浙江专用中考数学二轮提升练习热点08概率与统计解析版doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    (浙江专用)中考数学二轮提升练习热点06 相似三角形(2份,原卷版+解析版):

    这是一份(浙江专用)中考数学二轮提升练习热点06 相似三角形(2份,原卷版+解析版),文件包含浙江专用中考数学二轮提升练习热点06相似三角形原卷版doc、浙江专用中考数学二轮提升练习热点06相似三角形解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map