![2024年辽宁省营口市中考数学模拟试题试卷(解析)第1页](http://img-preview.51jiaoxi.com/2/3/16680358/0-1738673295661/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年辽宁省营口市中考数学模拟试题试卷(解析)第2页](http://img-preview.51jiaoxi.com/2/3/16680358/0-1738673295683/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年辽宁省营口市中考数学模拟试题试卷(解析)第3页](http://img-preview.51jiaoxi.com/2/3/16680358/0-1738673295700/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年辽宁省营口市中考数学模拟试题试卷(解析)
展开
这是一份2024年辽宁省营口市中考数学模拟试题试卷(解析),共25页。试卷主要包含了选择题,填空题,解答题,解答题(本题满分14分等内容,欢迎下载使用。
一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)
1.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.下列四个剪纸图案中,是中心对称图形的是( )
A.B.
C.D.
【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A、不是中心对称图形,故本选项不合题意;
B、不是中心对称图形,故本选项不合题意;
C、不是中心对称图形,故本选项不合题意;
D、是中心对称图形,故本选项符合题意;
故选:D.
2.中央财政下达2021年支持学前教育发展资金预算为19840000000元.数据19840000000用科学记数法表示为( )
A.0.1984×1011B.1.984×1010
C.1.984×109D.19.84×109
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:19840000000=1.984×1010.
故选:B.
3.估计的值在( )
A.3和4之间B.4和5之间C.5和6之间D.6和7之间
【分析】先写出21的范围,再写出的范围.
【解答】解:∵16<21<25,
∴4<<5,
故选:B.
4.某班15名男生引体向上成绩如表:
则这组数据的众数和中位数分别是( )
A.10,7B.10,10C.7,10D.7,12
【分析】根据中位数与众数的定义,众数是出现次数最多的一个,从小到大排列后,中位数是第8个数,解答即可.
【解答】解:7出现的次数最多,出现了5次,所以众数为7;
第8个数是10,所以中位数为10.
故选:C.
5.下列计算正确的是( )
A.2a+3b=5abB.5a3b÷ab=5a2b
C.(2a+b)2=4a2+b2D.(﹣2a2b3)3=﹣8a6b9
【分析】A.直接利用合并同类项法则计算判断即可;
B.直接利用单项式除以单项式计算得出答案;
C.直接利用完全平方公式计算得出答案;
D.直接利用积的乘方运算法则计算得出答案.
【解答】解:A.2a和3b,不是同类项,无法合并,故此选项不合题意;
B.5a3b÷ab=5a2,故此选项不合题意;
C.(2a+b)2=4a2+4ab+b2,故此选项不合题意;
D.(﹣2a2b3)3=﹣8a6b9,故此选项符合题意;
故选:D.
6.如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为( )
A.41°B.51°C.42°D.49
【分析】过点C作MC∥AB,则MC∥PH,由正六边形的内角和及三角形的内角和求得∠2=41°,根据平行线的性质得到∠BCM=41°,∠MCD=79°,∠PHD=79°,由四边形的内角和即可求解.
【解答】解:如图,过点C作MC∥AB,则MC∥PH,
∵六边形ABCDEF是正六边形,
∴∠B=∠BCD=∠CDE=∠D=∠DEF==120°,
∵∠1=19°,
∴∠2=180°﹣∠1﹣∠B=41°,
∵MC∥AB,
∴∠BCM=∠2=41°,
∴∠MCD=∠BCD﹣∠BCM=79°,
∵MC∥PH,
∴∠PHD=∠MCD=79°,
四边形PHDE的内角和是360°,
∴∠2=360°﹣∠PGD﹣∠D﹣∠DEF=41°,
故选:A.
7.如图,EF与AB,BC,CD分别交于点E,G,F,且∠1=∠2=30°,EF⊥AB,则下列结论错误的是( )
A.AB∥CDB.∠3=60°C.FG=FCD.GF⊥CD
【分析】先根据平行线的判定可得AB∥CD,根据直角三角形的性质可得∠3,根据含30°的直角三角形的性质可得FG=GC,再由平行线的性质得到GF⊥CD,即可得出结论.
【解答】解:∵∠1=∠2=30°,
∴AB∥CD,故A不符合题意;
∵EF⊥AB,
∴∠BEG=90°,
∴∠3=90°﹣30°=60°,故B不符合题意;
∵∠2=30°,
∴FG=GC,故C符合题意;
∵AB∥CD,EF⊥AB,
∴GF⊥CD,故D不符合题意.
故选:C.
8.如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D是上任意一点,则∠ADB度数为( )
A.112°B.124°C.122°D.134°
【分析】作所对的圆周角∠APB,如图,先利用等腰三角形的性质得到OC平分∠AOB,则∠AOC=∠BOC=56°,再根据圆周角定理得到∠APB=56°,然后根据圆内接四边形的性质计算∠ADB的度数.
【解答】解:作所对的圆周角∠APB,如图,
∵OC⊥AB,OA=OB,
∴OC平分∠AOB,
∴∠AOC=∠BOC=56°,
∴∠APB=∠AOB=56°,
∵∠APB+∠ADB=180°,
∴∠ADB=180°﹣56°=124°.
故选:B.
9.已知一次函数y=kx﹣k过点(﹣1,4),则下列结论正确的是( )
A.y随x增大而增大
B.k=2
C.直线过点(1,0)
D.与坐标轴围成的三角形面积为2
【分析】把点(﹣1,4)代入一次函数y=kx﹣k,求得k的值,根据一次函数图象与性质的关系对A、B、C进行判断;根据题意求得直线与坐标轴的交点,然后算出三角形的面积,即可对D进行判断断.
【解答】解:把点(﹣1,4)代入一次函数y=kx﹣k,得,
4=﹣k﹣k,
解得k=﹣2,
∴y=﹣2x+2,
A、k=﹣2<0,y随x增大而增大,选项A不符合题意;
B、k=﹣2,选项B不符合题意;
C、当y=0时,﹣2x+2=0,解得:x=1,
∴一次函数y=﹣2x+2的图象与x轴的交点为(1,0),选项C符合题意;
D、当x=0时,y=﹣2×0+2=2,与坐标轴围成的三角形面积为=1,选项D不符合题意.
故选:C.
10.如图,在平面直角坐标系中,菱形ABCD的边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数y=经过A,B两点,若菱形ABCD面积为8,则k值为( )
A.﹣8B.﹣2C.﹣8D.﹣6
【分析】根据函数解析式和A、B点的纵坐标,分别写出A、B点的坐标,根据菱形的面积=BC×(yA﹣yB)=8,得出关于k的方程,解方程得出正确取值即可.
【解答】解:∵四边形ABCD是菱形,
∴AB=BC,AD∥BC,
∵A、B两点的纵坐标分别是4、2,反比例函数y=经过A、B两点,
∴xB=,xA=,即A(,4),B(,2),
∴AB2=(﹣)2+(4﹣2)2=+4,
∴BC=AB=,
又∵菱形ABCD的面积为8,
∴BC×(yA﹣yB)=8,
即×(4﹣2)=8,
整理得=4,
解得k=±8,
∵函数图象在第二象限,
∴k<0,即k=﹣8,
故选:A.
二、填空题(每小题3分,共18分)
11.若代数式有意义,则x的取值范围是 x≤ .
【分析】根据二次根式有意义的条件可得1﹣2x≥0,再解不等式即可.
【解答】解:由题意得:1﹣2x≥0,
解得:x≤,
故答案为:x≤.
12.若∠A=34°,则∠A的补角为 146° .
【分析】根据互为补角的两个角的和等于180°列式计算即可得解.
【解答】解:∠A的补角=180°﹣∠A=180°﹣34°=146°.
故答案为:146°.
13.已知关于x的一元二次方程x2+2x﹣1+m=0有两个实数根,则实数m的取值范围是 m≤2 .
【分析】利用判别式的意义得到△=22﹣4(﹣1+m)≥0,然后解不等式即可.
【解答】解:根据题意得△=22﹣4(﹣1+m)≥0,
解得m≤2.
故答案为m≤2.
14.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S△EFG=1,则S△ABC= 24 .
【分析】取AG的中点M,连接DM,根据ASA证△DMF≌△EGF,得出MF=GF=AM,根据等高关系求出△ADM的面积为2,根据△ADM和△ABG边和高的比例关系得出S△ADM=S△ABG,从而得出梯形DMBG的面积为6,进而得出△BDE的面积为6,同理可得S△BDE=S△ABC,即可得出△ABC的面积.
【解答】解:∵DE是△ABC的中位线,
∴D、E分别为AB、BC的中点,
如图过D作DM∥BC交AG于点M,
∵DM∥BC,
∴∠DMF=∠EGF,
∵点F为DE的中点,
∴DF=EF,
在△DMF和△EGF中,
,
∴△DMF≌△EGF(ASA),
∴S△DMF=S△EGF=1,GF=FM,DM=GE,
∵点D为AB的中点,且DM∥BC,
∴AM=MG,
∴FM=AM,
∴S△ADM=2S△DMF=2,
∵DM为△ABG的中位线,
∴=,
∴S△ABG=4S△ADM=4×2=8,
∴S梯形DMGB=S△ABG﹣S△ADM=8﹣2=6,
∴S△BDE=S梯形DMGB=6,
∵DE是△ABC的中位线,
∴S△ABC=4S△BDE=4×6=24,
故答案为:24.
15.如图,∠MON=40°,以O为圆心,4为半径作弧交OM于点A,交ON于点B,分别以点A,B为圆心,大于AB的长为半径画弧,两弧在∠MON的内部相交于点C,画射线OC交于点D,E为OA上一动点,连接BE,DE,则阴影部分周长的最小值为 4+π .
【分析】利用作图得到OA=OB=OD=4,∠BOD=∠AOD=20°,则根据弧长公式可计算出的长度为π,过B点关于OM的对称点F,连接DF交OM于E′,连接OF,如图,证明△ODF为等边三角形得到DF=4,接着利用两点之间线段最短可判断此时E′B+E′D的值最小,从而得到阴影部分周长的最小值.
【解答】解:由作法得OC平分∠MON,OA=OB=OD=4,
∴∠BOD=∠AOD=∠MON=×40°=20°,
∴的长度为=π,
过B点关于OM的对称点F,连接DF交OM于E′,连接OF,如图,
∴OF=OB,∠FOA=∠BOA=40°,
∴OD=OF,
∴△ODF为等边三角形,
∴DF=OD=4,
∵E′B=E′F,
∴E′B+E′D=E′F+E′D=DF=4,
∴此时E′B+E′D的值最小,
∴阴影部分周长的最小值为4+π.
故答案为4+π.
16.如图,矩形ABCD中,AB=5,BC=4,点E是AB边上一点,AE=3,连接DE,点F是BC延长线上一点,连接AF,且∠F=∠EDC,则CF= 6 .
【分析】如图,连接EC,过点D作DH⊥EC于H.证明CE∥AF,利用平行线分线段成比例定理,解决问题即可.
【解答】解:如图,连接EC,过点D作DH⊥EC于H.
∵四边形ABCD是矩形,
∴∠BAD=∠BCD=90°,AD=BC=4,AB=CD=5,
∵AE=3,
∴DE===5,
∴DE=DC,
∵DH⊥EC,
∴∠CDH=∠EDH,
∵∠F=∠EDC,∠CDH=∠EDC,
∴∠CDH=∠F,
∵∠BCE+∠DCH=90°,∠DCH+∠CDH=90°,
∴∠BCE=∠CDH,
∴∠BCE=∠F,
∴EC∥AF,
∴=,
∴=,
∴CF=6,
故答案为:6.
三、解答题(17小题10分,18小题10分,共20分)
17.(10分)先化简,再求值:,其中x=+|﹣2|﹣3tan60°.
【分析】先根据分式的混合运算顺序和运算法则化简原式,再由二次根式的性质、绝对值的性质及特殊锐角的三角函数值得出x的值,继而代入计算即可.
【解答】解:原式=[﹣]•
=(﹣)•
=•
=,
当x=+|﹣2|﹣3tan60°=3+2﹣3=2时,
原式==.
18.(10分)为加强交通安全教育,某中学对全体学生进行“交通知识”测试,学校随机抽取了部分学生的测试成绩,并根据测试成绩绘制两种统计图表(不完整),请结合图中信息解答下列问题:
学生测试成绩频数分布表
(1)表中的m值为 12 ,n值为 36 ;
(2)求扇形统计图中C部分所在扇形的圆心角度数;
(3)若测试成绩80分以上(含80分)为优秀,根据调查结果请估计全校2000名学生中测试成绩为优秀的人数.
【分析】(1)用60≤x<70的频数和百分比先求出总人数,再根据频数=总数×百分比求出n的值,然后用总数减去A、C、D的人数即可求出m的值;
(2)先求得C部分所占的比例,然后乘以360度,即可求得C部分所对应的圆心角的度数;
(3)用全校的总人数乘以试成绩80分以上(含80分)的人数所占的比即可.
【解答】解:(1)根据题意得:抽取学生的总数:8÷10%=80(人),
n=80×45%=36(人),
m=80﹣8﹣24﹣36=12(人),
故答案为:12,36;
(2)扇形统计图中C部分所在扇形的圆心角度数是:360°×=108°;
(3)2000×=1500(人).
答:估计全校2000名学生中测试成绩为优秀的人数为1500人.
四、解答题(19小题10分,20小题10分,共20分)
19.(10分)李老师为缓解小如和小意的压力,准备了四个完全相同(不透明)的锦囊,里面各装有一张纸条,分别写有:A.转移注意力,B.合理宣泄,C.自我暗示,D.放松训练.
(1)若小如随机取走一个锦囊,则取走的是写有“自我暗示”的概率是 ;
(2)若小如和小意每人先后随机抽取一个锦囊(走后不放回),请用列表法或画树状图的方法求小如和小意都没有取走“合理宣泄”的概率.
【分析】(1)直接由概率公式求解即可;
(2)画树状图,共有12种等可能的结果,小如和小意都没有取走“合理宣泄”的结果有6种,再由概率公式求解即可.
【解答】解:(1)若小如随机取走一个锦囊,则取走的是写有“自我暗示”的概率是,
故答案为:;
(2)画树状图如图:
共有12种等可能的结果,小如和小意都没有取走“合理宣泄”的结果有6种,
∴小如和小意都没有取走“合理宣泄”的概率为=.
20.(10分)为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.
(1)求这两种图书的单价分别是多少元?
(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?
【分析】(1)首先设“文学类”图书的单价为x元/本,则“科普类”图书的单价为(1+20%)x元/本,根据题意可得等量关系:3600元购买的科普类图书的本数﹣20=用2700元购买的文学类图书的本数,根据等量关系列出方程,再解即可.
(2)设“科普类”书购a本,则“文学类”书购(100﹣a)本,根据“费用不超过1600元”列出不等式并解答.
【解答】解:(1)设“文学类”图书的单价为x元/本,则“科普类”图书的单价为(1+20%)x元/本,
依题意:﹣20=,
解之得:x=15.
经检验,x=15是所列分程的根,且合实际,
所以(1+20%)x=18.
答:科普类书单价为18元/本,文学类书单价为15元/本;
(2)设“科普类”书购a本,则“文学类”书购(100﹣a)本,
依题意:18a+15(100﹣a)≤1600,
解之得:a≤.
因为a是正整数,
所以a最大值=33.
答:最多可购“科普类”图书33本.
五、解答题(21小题10分,22小题12分,共22分)
21.(10分)小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)
(参考数据:sin63.4°≈0.9,cs63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)
【分析】过D作DM⊥AC于M,过B作BN⊥AN于E,设MD=x,在直角三角形中,利用三角函数即可x表示出AM与CM,根据AC=AM+CM即可列方程,从而求得MD的长,进一步求得AD的长,在直角三角形中,利用三角函数即可求出AN与NE,即可求得DN,从而求得DE.
【解答】解:过D作DM⊥AC于M,
设MD=x,
在Rt△MAD中,∠MAD=45°,
∴△ADM是等腰直角三角形,
∴AM=MD=x,
∴AD=x,
在Rt△MCD中,∠MDC=63.4°,
∴MC≈2MD=2x,
∵AC=600+600=1200,
∴x+2x=1200,
解得:x=400,
∴MD=400m,
∴AD=MD=400,
过B作BN⊥AN于N,
∵∠EAB=45°,∠EBC=75°,
∴∠E=30°,
在Rt△ABN中,∠NAB=45°,AB=600,
∴BN=AN=AB=300,
∴DN=AD﹣AN=400﹣300=100,
在Rt△NBE中,∠E=30°,
∴NE=BN=×300=300,
∴DE=NE﹣DN=300﹣100≈580(m),
即临D处学校和E处图书馆之间的距离是580m.
22.(12分)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.
(1)求证:AF=AE;
(2)若AB=8,BC=2,求AF的长.
【分析】(1)利用AB是⊙O直径,AF是⊙O的切线,得到∠DAF=∠ABF,利用=得到∠ABF=∠CAD,进而证得∠F=∠AEF,根据等角对等边即可证得AF=AE;
(2)利用勾股定理求得AC,利用△BCE∽△BAF得到=,求得CE=AF=AE,根据AE+CE=AC即可求得AF.
【解答】(1)证明:连接AD,
∵AB是⊙O直径,
∴∠ADB=∠ADF=90°,
∴∠F+∠DAF=90°,
∵AF是⊙O的切线,
∴∠FAB=90°,
∴∠F+∠ABF=90°,
∴∠DAF=∠ABF,
∵=,
∴∠ABF=∠CAD,
∴∠DAF=∠CAD,
∴∠F=∠AEF,
∴AF=AE;
(2)解:∵AB是⊙O直径,
∴∠C=90°,
∵AB=8,BC=2,
∴AC===2,
∵∠C=∠FAB=90°,∠CEB=∠AEF=∠F,
∴△BCE∽△BAF,
∴=,即=,
∴CE=AF,
∵AF=AE,
∴CE=AE,
∵AE+CE=AC=2,
∴AE=,
∴AF=AE=.
六、解答题(本题满分12分)
23.(12分)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).
(1)直接写出y与x的函数关系式;
(2)当售价为多少时,商家所获利润最大,最大利润是多少?
【分析】(1)先设出一次函数关系式,分40≤x≤60和60<x≤70两种情况用待定系数法分别求出函数解析式即可;
(2)设获得的利润为w元,分①当40≤x≤60时和②当60<x≤70时两种情况分别求出函数解析式,然后根据自变量的取值范围和函数的性质求函数的最大值.
【解答】解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),
将点(40,300)、(60,100)代入上式得:
,
解得:,
∴函数的表达式为:y=﹣10x+700(40≤x≤60),
设线段BC的表达式为:y=mx+n(60<x≤70),
将点(60,100)、(70,150)代入上式得:
,
解得:,
∴函数的表达式为:y=5x﹣200(60<x≤70),
∴y与x的函数关系式为:y=;
(2)设获得的利润为w元,
①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,
∵﹣10<0,
∴当x=50时,w有值最大,最大值为4000元;
②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,
∵5>0,
∴当60<x≤70时,w随x的增大而增大,
∴当x=70时,w有最大,最大值为:5(70﹣50)2+2500=4500(元),
综上,当售价为70元时,该商家获得的利润最大,最大利润为4500元.
七、解答题(本题满分14分
24.(14分)如图,△ABC和△DEF都是等腰直角三角形,AB=AC,∠BAC=90°,DE=DF,∠EDF=90°,D为BC边中点,连接AF,且A、F、E三点恰好在一条直线上,EF交BC于点H,连接BF,CE.
(1)求证:AF=CE;
(2)猜想CE,BF,BC之间的数量关系,并证明;
(3)若CH=2,AH=4,请直接写出线段AC,AE的长.
【分析】(1)连接AD,证明△ADF≌△CDE(SAS),可得AF=CE.
(2)结论:CE2+BF2=BC2利用全等三角形的性质证明BF=AE,再证明∠AEC=90°,可得结论.
(3)设EH=m.证明△ADH∽△CEH,可得====2,推出DH=2m,推出AD=CD=2m+2,EC=m+1,在Rt△CEH中,根据CH2=EH2+CE2,构建方程求出m即可解决问题.
【解答】(1)证明:连接AD.
∵AB=AC,∠BAC=90°,BD=CD,
∴AD⊥CB,
AD=DB=DC.
∵∠ADC=∠EDF=90°,
∴∠ADF=∠CDE,
∵DF=DE,
∴△ADF≌△CDE(SAS),
∴AF=CE.
(2)结论:CE2+BF2=BC2.
理由:∵△ABC,△DEF都是等腰直角三角形,
∴AC=BC,∠DFE=∠DEF=45°,
∵△ADF≌△CDE(SAS),
∴∠AFD=∠DEC=135°,∠DAF=∠DCB,
∵∠BAD=∠ACD=45°,
∴∠BAD+∠DAF=∠ACD+∠DCE,
∴∠BAF=∠ACE,
∵AB=CA,AF=CE,
∴△BAF≌△ACE(SAS),
∴BF=AE,
∵∠AEC=∠DEC=∠DEF=135°﹣45°=90°,
∴AE2+CE2=AC2,
∴BF2+CE2=BC2.
(3)解:设EH=m.
∵∠ADH=∠CEH=90°,∠AHD=∠CHE,
∴△ADH∽△CEH,
∴====2,
∴DH=2m,
∴AD=CD=2m+2,
∴EC=m+1,
在Rt△CEH中,CH2=EH2+CE2,
∴22=m2+(m+1)2,
∴2m2+2m﹣3=0,
∴m=或(舍弃),
∴AE=AH+EH=,
∴AD=1+,
∴AC=AD=+.
八、解答题(本题满分14分)
25.(14分)如图,在平面直角坐标系xOy中,抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),点C为第二象限抛物线上一点,连接AB,AC,BC,其中AC与x轴交于点E,且tan∠OBC=2.
(1)求点C坐标;
(2)点P(m,0)为线段BE上一动点(P不与B,E重合),过点P作平行于y轴的直线l与△ABC的边分别交于M,N两点,将△BMN沿直线MN翻折得到△B′MN,设四边形B′NBM的面积为S,在点P移动过程中,求S与m的函数关系式;
(3)在(2)的条件下,若S=3S△ACB′,请直接写出所有满足条件的m值.
【分析】(1)如图1中,设BC交y轴于D.利用待定系数法求出b,c,解直角三角形求出点D的坐标,求出直线BD的解析式,构建方程组确定点C的坐标即可.
(2)分两种情形:当0<m<2时,当﹣<m≤0时,分别求出MN,根据S=•BB′•MN,构建关系式即可.
(3)分两种情形:根据S=3S△ACB′,构建方程求出m即可.
【解答】解:(1)∵抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),
∴,
解得,
∴抛物线的解析式为y=3x2﹣5x﹣2,
如图1中,设BC交y轴于D.
∵tan∠OBD=2=,OB=2,
∴OD=4,
∴D(0,4),
设直线BD的解析式为y=kx+b,则有,
解得,
∴直线BD的解析式为y=﹣2x+4,
由,解得(即点B)或,
∴C(﹣1,6).
(2)对于抛物线y=3x2﹣5x﹣2,令y=0,得到3x2﹣5x﹣2=0,解得x=2或﹣,
∴E(﹣,0),
∵A(0,﹣2),B(2,0),C(﹣1,6),
∴直线AB的解析式为y=x﹣2,直线AC的解析式为y=﹣8x﹣2,
当0<m<2时,∵P(m,0),
∴M(m,﹣2m+4),N(m,m﹣2),
∴MN=﹣2m+4﹣m+2=﹣3m+6,
∴S=•BB′•MN=×2(2﹣m)×(﹣3m+6)=3m2﹣12m+12.
当﹣<m≤0时,如图2中,∵P(m,0),
∴M(m,﹣2m+4),N(m,﹣8m﹣2),
∴MN=﹣2m+4+8m+2=6m+6,
∴S=•BB′•MN=×2(2﹣m)×(6m+6)=﹣6m2+6m+12.
综上所述,S=.
(3)∵直线AC交x轴于(﹣,0),B′(2m﹣2),
当﹣6m2+6m+12=3××|2m﹣2+|×8,
解得m=或(都不符合题意舍弃),
当3m2﹣12m+12=3××|2m﹣2+|×8,
解得m=1或11(舍弃)或﹣2+或﹣2﹣(舍弃),
综上所述,满足条件的m的值为1或﹣2+.
个数
17
12
10
7
2
人数
2
3
4
5
1
组别
成绩x分
人数
A
60≤x<70
8
B
70≤x<80
m
C
80≤x<90
24
D
90≤x≤100
n
相关试卷
这是一份2024年辽宁省营口市中考数学模拟试题(解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年辽宁省营口市中考数学模拟试题(解析),共30页。
这是一份2024年辽宁省营口市中考数学模拟试题试卷(解析),共25页。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)