开学活动
搜索
    上传资料 赚现金

    适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.4函数中的构造问题新人教A版

    适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.4函数中的构造问题新人教A版第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.4函数中的构造问题新人教A版

    展开

    这是一份适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.4函数中的构造问题新人教A版,共3页。
    题型一 导数型构造函数
    命题点1 利用f(x)与x构造
    例1 (2023·济宁模拟)已知f(x)是定义在R上的偶函数,当x>0时,eq \f(xf′x-fx,x2)>0,且f(-2)=0,则不等式eq \f(fx,x)>0的解集是( )
    A.(-2,0)∪(0,2)
    B.(-∞,-2)∪(2,+∞)
    C.(-2,0)∪(2,+∞)
    D.(-∞,-2)∪(0,2)
    听课记录: ______________________________________________________________
    ________________________________________________________________________
    思维升华 (1)出现nf(x)+xf′(x)形式,构造函数F(x)=xnf(x);
    (2)出现xf′(x)-nf(x)形式,构造函数F(x)=eq \f(fx,xn).
    跟踪训练1 (2023·苏州模拟)已知函数f(x)在R上满足f(x)=f(-x),且当x∈(-∞,0]时,f(x)+xf′(x)b>cB.c>b>a
    C.a>c>bD.c>a>b
    命题点2 利用f(x)与ex构造
    例2 (2022·枣庄质检)已知f(x)为定义在R上的可导函数,f′(x)为其导函数,且f(x)3e3-x的解集为______________.
    命题点3 利用f(x)与sin x,cs x构造
    例3 已知函数y=f(x)对于任意的x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2)))满足f′(x)cs x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是( )
    A.f(0)>eq \r(2)f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)))
    B.eq \r(2)f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,3)))>f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)))
    C.eq \r(2)f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)))>f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)))
    D.f(0)>2f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)))
    听课记录: ______________________________________________________________
    ________________________________________________________________________
    思维升华 函数f(x)与sin x,cs x相结合构造可导函数的几种常见形式
    F(x)=f(x)sin x,
    F′(x)=f′(x)sin x+f(x)cs x;
    F(x)=eq \f(fx,sin x),
    F′(x)=eq \f(f′xsin x-fxcs x,sin2x);
    F(x)=f(x)cs x,
    F′(x)=f′(x)cs x-f(x)sin x;
    F(x)=eq \f(fx,cs x),
    F′(x)=eq \f(f′xcs x+fxsin x,cs2x).
    跟踪训练3 已知定义在R上的奇函数f(x),其导函数为f′(x),且当x∈(0,+∞)时,f′(x)sin x+f(x)cs x0,若ln m-en-1=ln n-em,其中e是自然对数的底数,则( )
    A.m>nB.mea
    C.absin βB.cs α>cs β
    C.cs α>sin βD.sin α>cs β
    (2)(多选)(2023·福州模拟)设实数λ>0,对任意的x>1,不等式λeλx≥ln x恒成立,则λ的取值可能是( )
    A.e B.eq \f(1,2e)
    C.eq \f(1,e)D.eq \f(2,e)

    相关学案

    适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.5导数的综合应用新人教A版:

    这是一份适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.5导数的综合应用新人教A版,共4页。

    适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.3导数与函数的极值最值新人教A版:

    这是一份适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.3导数与函数的极值最值新人教A版,共4页。

    适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.2导数与函数的单调性新人教A版:

    这是一份适用于新教材强基版2024届高考数学一轮复习学案第三章一元函数的导数及其应用3.2导数与函数的单调性新人教A版,共4页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map