![(人教版)数学八年级下册精讲精练19.5一次函数的实际应用问题(原卷版) 第1页](http://img-preview.51jiaoxi.com/2/3/16701500/1-1739268850217/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(人教版)数学八年级下册精讲精练19.5一次函数的实际应用问题(原卷版) 第2页](http://img-preview.51jiaoxi.com/2/3/16701500/1-1739268850263/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(人教版)数学八年级下册精讲精练19.5一次函数的实际应用问题(原卷版) 第3页](http://img-preview.51jiaoxi.com/2/3/16701500/1-1739268850306/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(人教版)数学八年级下册精讲精练19.5一次函数的实际应用问题(解析版) 第1页](http://img-preview.51jiaoxi.com/2/3/16701500/0-1739268841220/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(人教版)数学八年级下册精讲精练19.5一次函数的实际应用问题(解析版) 第2页](http://img-preview.51jiaoxi.com/2/3/16701500/0-1739268841287/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(人教版)数学八年级下册精讲精练19.5一次函数的实际应用问题(解析版) 第3页](http://img-preview.51jiaoxi.com/2/3/16701500/0-1739268841354/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:(人教版)数学八年级下册精讲精练 (2份,原卷版+解析版)
初中数学人教版(2024)八年级下册19.2.2 一次函数练习题
展开
这是一份初中数学人教版(2024)八年级下册19.2.2 一次函数练习题,文件包含人教版数学八年级下册精讲精练195一次函数的实际应用问题原卷版doc、人教版数学八年级下册精讲精练195一次函数的实际应用问题解析版doc等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。
知识点一
一次函数的实际应用
◆1、利用一次函数解决实际问题,关键是分析题中的数量关系,联系实际生活及以前学过的内容,将实际问题抽象、升华为一次函数模型,即建模,再利用函数的性质解决问题.
◆2、在研究有关一次函数的实际问题时的解题步骤:
审题:认真读题,分析题中各个量之间的关系;
设自变量:根据各个量之间的关系设满足题意的自变量;
列函数解析式:根据各个量之间的关系列出函数解析式;
解决问:利用函数解析式或图象的性质解决问题;
得出结果.
知识点二
分段函数
◆1、分段函数:在函数自变量不同的取值范围内所对应的函数关系也不同,我们这样的函数称为分段函数.
◆2、学习一次函数中的分段函数,通常应注意以下几点:
(1)在解析式和图象上都要反映出自变量的相应取值范围。
(2)分段函数的图象是由几条线段(或射线)组成的折线.
(3)分析分段函数的图象要结合实际问题背景对图象的意义进行认识和理解,尤其要理解折线中横、纵坐标表示的实际意义.
题型一 利用一次函数解决销售问题
【例题1】(2022秋•阿城区期末)乐乐超市购进一批拼装玩具,进价为每个15元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系,若该玩具某天的销售单价是20元时,则当日的销售利润为( )
A.200元B.300元C.350元D.500元
【变式1-1】(2022秋•郫都区期末)某一蔬菜经营商从蔬菜批发市场批发了黄瓜和茄子共50千克到菜市场去卖,黄瓜和茄子当天的批发价与零售价如表所示:
(1)若批发黄瓜和茄子共花220元,则黄瓜和茄子各多少千克?
(2)设批发了黄瓜x千克,卖完这批黄瓜和茄子的利润是W元,求W与x的函数关系式.
【变式1-2】(2022秋•秦都区期末)为创建“绿色校园”,绿化校园环境,某校计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元,单价不变,第二次分别购进A、B两种花草12棵和5棵,共花费265元.求:
(1)A、B两种花草每棵的价格分别是多少元?
(2)若计划再购买A、B两种花草共30棵,设购买A种花草m棵,购买花草的总费用为W元,求出W关于m的函数表达式,并计算当m=9时,购买花草的总费用为多少元?
【变式1-3】(2022秋•海曙区期末)随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,其中,甲为按照次数收费,乙为收取办卡费用以后每次打折收费.设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下列问题.
(1)分别求出选择这两种卡消费时,y关于x的函数表达式;
(2)求出入园多少次时,两者花费一样?费用是多少?
(3)洋洋爸准备了240元,请问选择哪种划算?
【变式1-4】(2022秋•市南区期末)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(元)与销售量x(kg)之间的关系如图所示.
(1)求出甲种苹果销售额y甲与销售量x之间的函数关系式;
(2)求点B的坐标,并写出点B表示的实际意义;
(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg(a>30)时,它们的利润和为1695元,求a的值.
【变式1-5】(2021春•侯马市期中)某工厂,甲负责加工A型零件,乙负责加工B型零件,已知甲加工120个A型零件所用时间和乙加工160个B型零件所用时间相同,每天甲、乙两人共加工两种零件70个,设甲每天加工x个A型零件.
(1)求甲、乙每天各加工多少个零件;
(2)根据市场预测估计,加工A型零件所获得的利润为a元/件(5≤a≤8),加工B型零件所获得的利润每件比A型少2元.求每天甲、乙加工两种零件所获得的总利润y(元)与a(元/件)的函数关系式,并求总利润y的最大值和最小值.
题型二 利用一次函数解决有关行程问题
【例题2】(2022秋•宁波期末)小锐一家去离家200千米的某地自驾游,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求他们出发半小时时,离家多少千米?
(2)出发1小时后,在服务区等候另一家人一同前往,然后,以每小时80千米的速度直达目的地,求等候的时间及线段BC的解析式.
【变式2-1】(2022秋•宁阳县期末)甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:
(1) (填“甲”或“乙”)先到达终点;甲的速度是 米/分钟;
(2)求:甲与乙相遇时,他们离A地多少米?
【变式2-2】(2023•宁波模拟)小李、小王分别从甲地出发,骑自行车沿同一条路到乙地参加公益活动.如图,折线OAB和线段CD分别表示小李、小王离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.根据图中提供的信息,解答下列问题:
(1)求小王的骑车速度,点C的横坐标;
(2)求线段AB对应的函数表达式;
(3)当小王到达乙地时,小李距乙地还有多远?
【变式2-3】(2023•碑林区校级三模)小林同学从家出发,步行到离家a米的公园散步,速度为50米/分钟;6分钟后哥哥也从家出发沿着同一路线骑自行车到公园,哥哥到达公园后立即以原速返回家中,两人离家的距离y(米)与小林出发的时间x(分钟)的函数关系如图所示.
(1)a= ;
(2)求CD所在直线的函数表达式;
(3)小林出发多长时间与哥哥第二次相遇?
【变式2-4】(2022秋•招远市期末)小明和小亮分别从家和图书馆同时出发,沿同一条路相向而行,小明开始时跑步,中途改为步行,到达图书馆恰好用了45分钟.小亮骑自行车以300米/分的速度从图书馆直接回家,两人离家的路程y(米)与各自离开出发地的时间x(分)之间的函数图象如图所示,根据图象信息解答下列问题:
(1)小明跑步速度为 米/分,步行的速度 米/分;
(2)图中点D的坐标为 ;
(3)求小亮离家的路程y(米)与x(分)的函数关系式;
(4)两人出发多长时间相遇?
(5)请求出两人出发多长时间相距2500米.
【变式2-5】(2022秋•兰考县期末)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:
(1)请直接写出快、慢两车的速度;
(2)求快车返回过程中y(千米)与x(小时)的函数关系式;
(3)两车出发后经过多长时间相距90千米的路程?
题型三 利用一次函数解决工程问题
【例题3】为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.
(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;
(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?
【变式3-1】(2023•龙川县校级开学)一个蓄水池的剩水量Q和水泵抽水时间t的关系图象如图.
(1)水泵抽水前,该蓄水池内有多少水?抽完这些水需要多长时间?
(2)水泵抽水8h后,蓄水池的剩水量是多少?
(3)当蓄水池的剩水量是100m3时,求水泵的抽水时间.
【变式3-2】(2022•吉林三模)工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.
(1)甲组的工作效率是 件/时;
(2)求出图中a的值及乙组更换设备后加工零件的数量y与时间x之间的函数解析式.
(3)当x为何值时,两组一共生产570件.
【变式3-3】某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.
(1)甲车间每天加工零件为 件,图中d值为 .
(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.
(3)甲车间加工多长时间时,两车间加工零件总数为1000件?
【变式3-4】(2021春•甘井子区校级期末)甲、乙两个工程队分别同时修整两段公路,所修公路的长度y(米)与修路时间x(时)之间的关系如图所示,根据图中提供的信息,解答下列问题:
(1)甲队每小时修路 米;乙队修路2小时后,每小时修路 米;
(2)修路6小时,甲比乙多修了 米;
(3)当修路时间是多少时,甲、乙两队所修公路的长度相同?
【变式3-5】甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.
(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式 ;
(2)求乙组加工零件总量a的值;
(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?
题型四 利用图表信息解决实际问题
【例题4】(2022秋•曹县期末)某公司准备把30吨货物全部运往甲、乙两地,运往甲,乙两地的费用如表:
设运往甲地为x吨,全部运出的总费用为y元.
(1)求y与x间的函数表达式;
(2)若该公司运出货物的总费用为5400元,求该公司运往乙地多少吨货物?
【变式4-1】(2022秋•兴化市期末)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.
(1)求y关于x的函数表达式;
(2)求旅客最多可免费携带行李的质量;
(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是 .
【变式4-2】(2021春•邵阳期末)为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y应是x的一次函数,下表列出两套符合条件的课桌椅的高度:第一套第二套椅子高度xcm桌子高度ycm.
(1)请确定y与x的函数关系式.
(2)现有一把高39cm的椅子和一张高为78.2cm的课桌,它们是否配套?为什么?
【变式4-3】已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
(1)求y关于x的函数关系式(不需要写出函数的定义域);
(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.
【变式4-4】(2021•利通区校级一模)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:
(1)求出y关于x的函数解析式,并求当x=150时y的值;
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为lcm,求l的取值范围.
【变式4-5】某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:
(1)截止到6月9日,该商店销售这种水果一共获利多少元?
(2)求图象中线段BC所在直线对应的函数表达式.
题型五 实际问题中的分段函数
【例题5】一旅游团来到某旅游景点,看到售票处旁边的公告栏上写着:①一次购买10张以下(含10张),每张门票180元.②一次购买10张以上,超过10张的部分,每张门票6折优惠.
(1)若旅游团人数为9人,门票费用是多少?若旅游团人数为30人,门票费用又是多少?
(2)设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.
【变式5-1】(2022春•南召县期中)“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折:
(1)观察下表:
完成填空:a= ,b= ;
(2)写出付款金额y(元)关于购买量x(千克)的函数关系,并画出函数图象.
【变式5-2】(2022秋•淮北月考)我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费的办法收费,即一个月用水10t以内(包括10t)的用户,每吨收水费a元;一个月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b元(b>a)收费.设一户居民月用水xt,应交水费y元,y与x之间的函数关系如图所示.
(1)求a的值;若某户居民上月用水8t,应交水费多少元?
(2)求b的值,并写出当x>10时,y与x之间的函数表达式;
(3)若某户居民八月份应缴水费29元,则该户居民八月份用水量是多少?
【变式5-3】(2023•灞桥区校级四模)五一期间,灞桥水果经销商老王每天从雨润水果批发市场分别以10元/斤、11元/斤的价格购进奶油味草莓和巧克力味草莓进行销售.奶油味草莓的销售单价为13元/斤,巧克力味草莓的销售方式为:当销售不超过50斤时,销售单价为15元/斤;当销售超过50斤时,超出的部分销售单价为14.5元/斤.老王每天购进这两种味道的草莓共100斤,并在当天全部销售完,设每天销售巧克力味草莓x斤(销售过程中损耗不计).
(1)求出每天销售获利y(元)与x(斤)的函数关系式,并写出x的取值范围;
(2)若5月1日这一天,老王购进35斤奶油味草莓,求老王这一天将所有草莓都销售完可以获利多少钱?
【变式5-4】(2022春•临沭县期末)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援.”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)求出当0≤x≤50和x>50时,y与x之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于50千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?最少是多少元?
【变式5-5】(2022春•潼南区期末)某校组队参加庆祝中国共青团成立100周年经典诵读比赛,需要为参赛选手每人配备一个朗诵文件夹.已知甲、乙两家店铺销售同款文件夹,原价相同,但销售方式不同,在甲店铺,无论一次性购买多少个文件夹,一律打8.5折;在乙店铺,当购买数量不超过30个时,按原价出售,当购买数量超过30个时,超过的部分打7折.设该校需购买x个朗诵文件夹,在甲店铺购买所需的费用为y1元,在乙店铺购买所需的费用为y2元,y1,y2关于x的函数图象如图所示.
(1)分别求出y1,y2关于x的函数解析式;
(2)求图中m的值,并说明m的实际意义;
(3)若该学校一次性购买朗诵文件夹的数最超过40个,但不超过90个,到哪家店铺购买更优惠?
题型六 利用一次函数解决最值问题
【例题6】(2022秋•济南期末)某企业生产并销售某种产品,整理出该商品在第x(1≤x≤90)天的售价y与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(100﹣x)件.
(1)试求出售价y与x之间的函数关系式;
(2)请求出该商品在销售过程中的最大利润.
【变式6-1】(2022春•抚顺期末)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产每月的销售量都不超过20吨.设每月销售甲特产x吨,一个月销售这两种特产所获得的总利润为W万元.
(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?
(2)求W与x的函数关系式;
(3)求该公司一个月销售这两种特产所能获得的最大总利润.
【变式6-2】(2022秋•章贡区校级期末)某地允许市场经营主体在规范有序的条件下,采取“店铺外摆”“露天市场”方式进行销售.个体业主小王响应号召,采取“店铺外摆”方式销售甲、乙两种特价商品,两种商品的进价与售价如表所示:
小王计划购进甲、乙两种商品共100件进行销售,设小王购进甲商品x件,甲、乙两种商品全部销售完后获得的利润为y元.
(1)求出y与x之间的函数关系式;
(2)若购进乙商品的件数不少于甲商品件数的3倍,当购进甲、乙两种商品各多少件时,可使得甲、乙两种商品全部销售完后获得的利润最大?
【变式6-3】(2022秋•市中区期末)为增加校园绿化面积,某校计划购买甲、乙两种树苗100棵.已知购买20棵甲种树苗和16棵乙种树苗共花费1280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.
(1)求甲、乙两种树苗每棵的价格分别是多少元?
(2)若购买甲树苗不少于25棵,则购买甲、乙两种树苗各多少棵时花费最少?最少费用是多少元?
【变式6-4】(2021秋•长安区期末)某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.
(1)求甲、乙两种奖品的单价;
(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品不少于20件,应如何购买才能使总费用最少?并求出最少费用.
【变式6-5】今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.
题型七 利用一次函数解决几何问题
【例题7】(2021春•武江区校级期末)在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)直接写出△APD的面积的最大值.
【变式7-1】如图①所示,正方形ABCD的边长为6cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:
(1)点P在AB上运动的时间为 s,在CD上运动的速度为 cm/s,三角形APD的面积S的最大值为 cm2;
(2)求出点P在CD上运动时S与t之间的函数解析式;
(3)当t为何值时,三角形APD的面积为10cm2
【变式7-2】(2021春•景德镇期末)如图①所示,在长方形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D的路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P,Q同时出发,点P的速度为1cm/秒,点Q的速度为2cm/秒,a秒时点P,Q同时改变速度,点P的速度变为bcm/秒,点Q的速度变为ccm/秒,如图②所示的是△APD的面积S1(cm2)与点P出发时间x(秒)之间的关系.图③是△AQD的面积S2(cm2)与点Q出发时间x(秒)之间的关系.根据图象回答下列问题:
(1)a= ,b= ,c= ;
(2)设点P,Q出发x(x>a)秒后离开点A的路程分别为y1,cm,y2,cm,请分别写出y1,y2与x之间的关系式,并求出点P,Q相遇时x的值.
【变式7-3】(2022春•济南期末)如图1,已知△ABC中,BC=6,AF为BC边上的高,P是BC上一动点,沿BC由B向C运动,连接AP,在这个变化过程中设BP=x,且把x看成自变量,设△APC的面积为S,图2刻画的是S随x变化而变化的图象,根据图象回答以下问题:
(1)△ABC的高AF的长为 .
(2)写出S与x的关系式 .
(3)设△ABP的面积为y,写出y与x的关系式,并求当x为何值时,△APC的面积与△ABP的面积相等?
【变式7-4】(2022春•朝阳区校级月考)如图1,在矩形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿AB﹣BC﹣CD的路线运动,到点D停止;点Q从点D出发,沿DC﹣CB﹣BA路线运动,到点A停止.若点P、Q同时出发,速度分别为每秒1cm,2cm,a秒时,P、Q两点同时改变速度,分别变为每秒2cm,cm(P、Q两点速度改变后一直保持此速度,直到停止),如图2是△APD的面积s和运动时间x(秒)的图象.
(1)求出a值;
(2)设点P已行的路程为y1,点Q还剩的路程为y2,请分别求出改变速度后,y1、y2与x的函数关系式;
(3)当P、O两点都在BC边上时,若PQ=3cm,求x的值.
【变式7-5】(2021春•柳南区校级期末)如图1,已知长方形ABCD,AB=CD,BC=AD,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→D运动到D点停止,速度为2cm/s,设点P用的时间为x秒,△APD的面积为ycm2,y和x的关系如图2所示.
(1)AB= cm,BC= cm;
(2)写出0≤x≤3时,y与x之间的关系式;
(3)当y=12时,求x的值;
(4)当P在线段BC上运动时,是否存在点P使得△APD的周长最小?若存在,请直接写出此时∠APD的度数.
解题技巧提炼
本题考查了销售问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.
品名
黄瓜
茄子
批发价(元/千克)
4.8
4
零售价(元/千克)
7.2
5.6
解题技巧提炼
本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.
解题技巧提炼
本题考查了工程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.
目的地
甲地
乙地
每吨费用(元)
150
240
解题技巧提炼
利用表格给出的信息,采用待定系数法求出函数解析式,进而解答实际问题.
x(kg)
…
30
40
50
…
y(元)
…
4
6
8
…
第一套
第二套
椅子高度xcm
40
37
桌子高度ycm
75
70
水银柱的长度x(cm)
4.2
…
8.2
9.8
体温计的读数y(℃)
35.0
…
40.0
42.0
单层部分的长度x(cm)
…
4
6
8
10
…
双层部分的长度y(cm)
…
73
72
71
70
…
日期
销售记录
6月1日
库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).
6月9日
从6月1日至今,一共售出200kg.
6月10、11日
这两天以成本价促销,之后售价恢复到10元/kg.
6月12日
补充进货200kg,成本价8.5元/kg.
6月30日
800kg水果全部售完,一共获利1200元.
解题技巧提炼
学习一次函数中的分段函数,通常应注意以下几点:
⑴在解析式和图象上都要反映出自变量的相应取值范围。
⑵分段函数的图象是由几条线段(或射线)组成的折线.
⑶分析分段函数的图象要结合实际问题背景对图象的意义进行认识和理解,尤其要理解折线中横、纵坐标表示的实际意义.
购买量/千克
0.5
1
1.5
2
2.5
3
3.5
4
…
付款金额/元
2.5
5
7.5
10
a
14
b
18
…
解题技巧提炼
根据题意求出函数解析式,再利用一次函数增减性得出函数最值是解题关键.
甲商品
乙商品
进价(元/件)
35
5
售价(元/件)
45
8
解题技巧提炼
本题考查了动点问题的函数图象,三角形的面积公式等知识.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程,学会分类讨论的思想方法.
相关试卷
这是一份(人教版)数学八年级下册期末复习训练专题 一次函数的实际应用问题 (2份,原卷版+解析版),文件包含人教版数学八年级下册期末复习训练专题一次函数的实际应用问题原卷版doc、人教版数学八年级下册期末复习训练专题一次函数的实际应用问题解析版doc等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。
这是一份初中数学人教版(2024)八年级下册第十九章 一次函数19.1 变量与函数19.1.2 函数的图象课时作业,文件包含人教版数学八年级下册精讲精练193一次函数的图象与性质原卷版doc、人教版数学八年级下册精讲精练193一次函数的图象与性质解析版doc等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
这是一份人教版八年级数学下册同步精讲精练19.5一次函数的实际应用问题(原卷版+解析),共72页。试卷主要包含了5 一次函数的实际应用问题,2cm,求此时体温计的读数.等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)